系统仿真学报 ›› 2025, Vol. 37 ›› Issue (3): 704-717.doi: 10.16182/j.issn1004731x.joss.24-0531

• 论文 • 上一篇    

基于MBSE和VAPS的民用直升机显控系统设计与验证

曹晞1, 刘波1, 苏炳志1, 聂涛2   

  1. 1.中国直升机设计研究所,江西 景德镇 333000
    2.北京理工大学,北京 100081
  • 收稿日期:2024-05-19 修回日期:2024-06-17 出版日期:2025-03-17 发布日期:2025-03-21
  • 通讯作者: 苏炳志
  • 第一作者简介:曹晞(1984-),女,高工,硕士,研究方向为航电总体与显控系统设计等。
  • 基金资助:
    国家重点研发项目(2023YFC3321704)

Design and Verification of Display and Control System Based on MBSE and VAPS for Civil Helicopter

Cao Xi1, Liu Bo1, Su Bingzhi1, Nie Tao2   

  1. 1.China Helicopter Research and Development Institute, Jingdezhen 333000, China
    2.Beijing Institute of Technology, Beijing 100081, China
  • Received:2024-05-19 Revised:2024-06-17 Online:2025-03-17 Published:2025-03-21
  • Contact: Su Bingzhi

摘要:

针对民用直升机显控系统需求难以追溯、交互设计缺陷难以洞察以及早期系统设计验证难以实现等问题,提出基于MBSE(model-based system engineering)和VAPS的民用直升机显控系统设计与验证方法。捕获利益攸关者需求形成系统需求,将系统需求分配给系统用例;构建黑盒活动图、顺序图自顶向下开展“需求–功能分析”描述显控系统级功能流,建立可运行的黑盒状态机验证功能逻辑设计的合理性;在黑盒功能架构的基础上进一步划分以构建显控系统架构,通过与飞行员交流迭代优化分配方案,将黑盒活动图中的活动分配到各显控子系统中实现功能向下传递,保证系统设计过程的连贯性。基于人机界面设计工具VAPS开发飞行员操作程序,验证了基于MBSE设计的显控系统需求、功能、逻辑的一致性和架构的合理性,实现了需求设计到验证的完全覆盖。

关键词: 基于模型的系统工程, VAPS, 民用直升机, 显控系统, 系统验证

Abstract:

Aiming at the challenges of difficulties in tracing requirements, detecting interaction design defects, and achieving early system design verification, this paper proposes a design and verification for the display and control system (DCS) of civil helicopters based on model-based systems engineering (MBSE) and VAPS. The method begins with capturing stakeholder requirements to form system requirements, followed by the allocation of these requirements to system use cases. Black-box activity diagrams and sequence diagrams are constructed to conduct "requirement-function analysis" from the top down, describing the functional flow of the DCS. A running black-box statechart diagram is further established to verify the rationality of functional logic design. Based on the black-box functional architecture, the DCS architecture is developed, with iterative optimization of the allocation scheme through pilot communication. Functional activities from the black-box activity diagram are allocated to subsystems to achieve functional cascading, ensuring coherence throughout the design process. Pilot operation procedures are developed using the VAPS human-machine interface design tool, verifying the consistency of requirements, functions, and logic as well as the rationality of the architecture. This process achieves comprehensive coverage from requirements design to verification.

Key words: model-based system engineering(MBSE), VAPS, civil helicopter, display and control system(DCS), system verification

中图分类号: