系统仿真学报 ›› 2025, Vol. 37 ›› Issue (3): 691-703.doi: 10.16182/j.issn1004731x.joss.23-1334

• 论文 • 上一篇    

TOHF:一种针对资源受限室内VSLAM的特征提取器

李若晴1, 赵瑶池1, 胡祝华1, 戚文璐2, 刘广丰1   

  1. 1.海南大学 网络空间安全学院,海南 海口 570228
    2.海南大学 信息与通信工程学院,海南 海口 570228
  • 收稿日期:2023-11-07 修回日期:2023-12-09 出版日期:2025-03-17 发布日期:2025-03-21
  • 通讯作者: 赵瑶池
  • 第一作者简介:李若晴(1998-),女,硕士,研究方向为计算机视觉。
  • 基金资助:
    国家自然科学基金(62161010);海南省自然科学基金(623RC446);海南省种业实验室资助项目(B23H10004);海南省重点研发计划(ZDYF2022GXJS348)

TOHF: A Feature Extractor for Resource-constrained Indoor VSLAM

Li Ruoqing1, Zhao Yaochi1, Hu Zhuhua1, Qi Wenlu2, Liu Guangfeng1   

  1. 1.School of Cyberspce Security, Hainan University, Haikou 570228, China
    2.School of Information and Communication Engineering, Hainan University, Haikou 570228, China
  • Received:2023-11-07 Revised:2023-12-09 Online:2025-03-17 Published:2025-03-21
  • Contact: Zhao Yaochi

摘要:

为解决现有VSLAM特征提取器在室内环境中对纹理和光照变化敏感、特征点冗余导致的局部依赖性过强以及硬件资源受限时的存储开销问题,提出了一种面向纹理的均匀FAST特征提取器(texture-oriented and homogenized FAST feature extractor,TOHF)。结合HVS(human visual system),采用二阶段阈值策略来更敏感地应对纹理的清晰度和复杂度差异。根据特征点密度的变化来动态调整特征点的分布,在兼顾计算效率和存储开销的同时,保证特征点分布结构信息。在资源受限设备录制的数据集和官方EuRoc数据集上基于ORB-SLAM3框架开展实验,采用匹配率、重投影误差、绝对轨迹误差(ATE)和耗时作为评估指标。实验结果表明:TOHF在视觉加惯导模式下带来更高精度和鲁棒性的同时,仍满足实时性要求。

关键词: VSLAM, HVS, 特征提取, ORB-SLAM3, 纹理

Abstract:

To address the issues of sensitivity to texture and lighting variations, excessive local dependence caused by feature point redundancy, and storage overhead under hardware resource constraints in existing VSLAM feature extractors in indoor environments, We propose the Texture-Oriented and Homogenized FAST Feature Extractor (TOHF), which integrates HVS (Human Visual System) for enhanced texture analysis. TOHF employs a two-stage thresholding strategy and dynamically adjusts feature point distribution, balancing computational efficiency and storage needs. We conducted experimental verification based on the ORB-SLAM3 framework on dataset from resource-limited device and the EuRoc dataset, focusing on matching rate, reprojection error, absolute trajectory error(ATE), and time efficiency. Results show that TOHF improves accuracy and robustness in vision-inertial navigation modes while maintaining real-time performance.

Key words: VSLAM, human visual system(HVS), feature extract, ORB-SLAM3, texture

中图分类号: