系统仿真学报 ›› 2025, Vol. 37 ›› Issue (4): 823-844.doi: 10.16182/j.issn1004731x.joss.23-1468

• 综述 •    下一篇

大语言模型视角下的智能规划方法综述

周棪忠, 罗俊仁, 谷学强, 张万鹏   

  1. 国防科技大学 智能科学学院,湖南 长沙 410073
  • 收稿日期:2023-12-04 修回日期:2024-01-08 出版日期:2025-04-17 发布日期:2025-04-16
  • 通讯作者: 张万鹏
  • 第一作者简介:周棪忠(1999-),男,土家族,硕士生,研究方向为智能规划、多智能体学习。
  • 基金资助:
    国家自然科学基金(61806212)

Survey on Intelligent Planning Methods from Large Language Models Perspective

Zhou Yanzhong, Luo Junren, Gu Xueqiang, Zhang Wanpeng   

  1. College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
  • Received:2023-12-04 Revised:2024-01-08 Online:2025-04-17 Published:2025-04-16
  • Contact: Zhang Wanpeng

摘要:

从大语言模型的视角入手,对智能规划的定义和发展进行概述,简要介绍了传统智能规划的方法;基于大语言智能体与智能规划的紧密关系,介绍了大语言模型的架构和典型的大模型智能体;围绕大模型的智能规划,梳理了规划语言学习、思维链推理、反馈优化和流程自动化共4类规划方法;结合当前的挑战与困难,介绍大模型进行智能规划的前沿研究展望。

关键词: 智能规划, 大语言模型, 生成式智能, 思维链

Abstract:

. Starting from the perspective of large language models, this paper gives an overview of the definition and development of intelligent planning, and briefly introduces the traditional methods of intelligent planning; based on the close relationship between large language model intelligent agents and intelligent planning, introduces the architecture of large language models and typical large model intelligent agents; focusing on the intelligent planning for large language models, combs through the learning of planning languages, chain of thought, feedback optimization, and process automation; combining with the current challenges and difficulties, introduces the outlook of cutting-edge research on intelligent planning with large models.

Key words: intelligent planning, large language models, generative intelligence, chain of thought

中图分类号: