系统仿真学报 ›› 2025, Vol. 37 ›› Issue (12): 3033-3049.doi: 10.16182/j.issn1004731x.joss.25-0576

• 综述 • 上一篇    

多智能体协同路径规划综述

熊骏1, 张文博1, 熊智2, 周峰1, 杨博1   

  1. 1.南京邮电大学 物联网学院,江苏 南京 210023
    2.南京航空航天大学 自动化学院,江苏 南京 211106
  • 收稿日期:2025-06-19 修回日期:2025-08-23 出版日期:2025-12-26 发布日期:2025-12-24
  • 第一作者简介:熊骏(1990-),男,副教授,博士,研究方向为集群协同导航与感知。
  • 基金资助:
    国家自然科学基金(62203228);国家自然科学基金(61873125);航空科学基金(ASFC-2022Z0220X9001);江苏省研究生科研与实践创新计划(KYCX25_1229)

Survey of Cooperative Multi-Agent Path Finding

Xiong Jun1, Zhang Wenbo1, Xiong Zhi2, Zhou Feng1, Yang Bo1   

  1. 1.School of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
    2.College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
  • Received:2025-06-19 Revised:2025-08-23 Online:2025-12-26 Published:2025-12-24

摘要:

多智能体协同路径规划(cooperative multi-agent path finding,Co-MAPF)在无人机编队、多智能体系统等领域得到广泛应用,通过多智能体之间的任务协作、路径规划与任务执行,以提升整体系统效率。从Co-MAPF问题的定义出发,介绍了集中式、分布式和混合式3种主要系统架构及其优缺点;对主流Co-MAPF算法进行了归类与评述,涵盖了基于采样、搜索、智能优化和学习的各类方法;在总结现有研究的基础上,分析了Co-MAPF算法当前面临的主要挑战,并展望了未来的发展方向。

关键词: 多智能体, 协同路径规划, 任务分配, 协同控制

Abstract:

Cooperative multi-agent path finding (Co-MAPF) has been widely applied in fields such as UAV formation and multi-agent systems, which enhances the overall system efficiency through task collaboration, path planning, and task execution among multiple agents. This paper introduced three main system architectures, namely centralized, distributed, and hybrid, along with their advantages and disadvantages based on the definition of the Co-MAPF problem, categorized, and reviewed mainstream Co-MAPF algorithms, including those based on sampling, search, intelligent optimization, and learning. Furthermore, this paper analyzed the main current challenges faced by Co-MAPF algorithms on the basis of summarizing existing research and outlined the future development directions.

Key words: multi-agent, cooperative path finding, task assignment, collaborative control

中图分类号: