系统仿真学报 ›› 2025, Vol. 37 ›› Issue (12): 3018-3032.doi: 10.16182/j.issn1004731x.joss.25-0471
• 专栏:复杂系统智能鲁棒调度优化 • 上一篇
李斌, 王于绰
收稿日期:2025-05-26
修回日期:2025-08-15
出版日期:2025-12-26
发布日期:2025-12-24
通讯作者:
王于绰
第一作者简介:李斌(1979-),男,副教授,博士,研究方向为电接触理论及应用、智能电器与智能电网技术。
基金资助:Li Bin, Wang Yuchuo
Received:2025-05-26
Revised:2025-08-15
Online:2025-12-26
Published:2025-12-24
Contact:
Wang Yuchuo
摘要:
为解决光伏系统故障频发的问题,提出一种基于改进旅鼠算法优化多模态融合故障诊断模型。通过马尔可夫转换场将光伏电流、电压一维时序信号转换为二维图像,利用多尺度卷积神经网络挖掘原始波形的空间特征;采用BiGRU提取原始波形的时序动态特征,通过特征融合层实现时空特征的互补增强。引入改进旅鼠算法对BiGRU隐藏层神经元数量、模型的学习率等参数进行自适应优化,结合注意力机制强化故障敏感特征的权重分配。仿真实验结果表明:所提模型仿真与实测数据的诊断准确率分别达到97.9%和95.4%,相较对比模型,诊断准确率提升最高4.1%,为光伏系统智能化运维提供了新的技术路径。
中图分类号:
李斌,王于绰 . 基于多策略融合的光伏系统故障诊断方法[J]. 系统仿真学报, 2025, 37(12): 3018-3032.
Li Bin,Wang Yuchuo . Fault Diagnosis Method for Photovoltaic Systems Based on Multi-strategy Fusion[J]. Journal of System Simulation, 2025, 37(12): 3018-3032.
表2
函数对比试验结果
| 函数 | 指标 | IALA | ALA | BWO | SSOA | HHO | WOA | IVY |
|---|---|---|---|---|---|---|---|---|
| F1 | 最优值 | 1.07×102 | 1.10×102 | 4.13×109 | 4.84×109 | 1.64×105 | 8.26×105 | 2.04×102 |
| 平均值 | 3.56×102 | 7.85×102 | 7.72×109 | 1.09×1010 | 6.82×105 | 9.98×106 | 8.76×107 | |
| 标准差 | 7.42×102 | 1.11×103 | 2.07×109 | 2.81×109 | 9.20×105 | 1.69×107 | 4.50×108 | |
| F2 | 最优值 | 1.21×103 | 1.22×103 | 2.20×103 | 2.43×103 | 1.57×103 | 1.50×103 | 1.23×103 |
| 平均值 | 1.62×103 | 1.62×103 | 2.56×103 | 3.32×103 | 2.08×103 | 2.26×103 | 2.20×103 | |
| 标准差 | 2.25×102 | 2.31×102 | 2.80×102 | 2.95×102 | 2.60×102 | 2.94×102 | 3.97×102 | |
| F3 | 最优值 | 7.09×102 | 7.15×102 | 7.73×102 | 7.97×102 | 7.20×102 | 7.40×102 | 7.31×102 |
| 平均值 | 7.25×102 | 7.27×102 | 7.99×102 | 8.27×102 | 7.92×102 | 7.83×102 | 7.87×102 | |
| 标准差 | 6.12 | 6.40 | 9.87 | 1.66×101 | 2.17×101 | 3.32×101 | 2.60×101 | |
| F4 | 最优值 | 1.73×103 | 1.74×103 | 7.16×103 | 2.48×105 | 3.98×103 | 3.15×103 | 4.09×104 |
| 平均值 | 1.81×103 | 1.82×103 | 2.15×105 | 5.42×105 | 5.55×104 | 2.24×105 | 4.50×105 | |
| 标准差 | 5.78×101 | 6.70×101 | 1.15×105 | 1.25×105 | 4.43×104 | 5.09×105 | 2.41×105 | |
| F5 | 最优值 | 2.20×103 | 2.21×103 | 2.36×103 | 2.70×103 | 2.31×103 | 2.27×103 | 2.30×103 |
| 平均值 | 2.29×103 | 2.30×103 | 2.62×103 | 3.18×103 | 2.42×103 | 2.41×103 | 2.32×103 | |
| 标准差 | 2.64×101 | 1.64×101 | 1.90×102 | 3.46×102 | 3.87×102 | 3.35×102 | 2.39×101 | |
| F6 | 最优值 | 2.50×102 | 2.73×103 | 2.59×103 | 2.84×103 | 2.75×103 | 2.54×103 | 2.50×103 |
| 平均值 | 2.64×103 | 2.75×103 | 2.73×103 | 2.95×103 | 2.82×103 | 2.77×103 | 2.71×103 | |
| 标准差 | 3.43×101 | 7.34 | 8.02×101 | 5.12×101 | 4.00×101 | 4.76×101 | 9.57×101 |
| [1] | Shouquat Hossain MD, Wadi Al-Fatlawi A, Kumar Laveet, et al. Solar PV High-penetration Scenario: An Overview of the Global PV Power Status and Future Growth[J]. Energy Systems, 2024: 1-57. |
| [2] | Xie Xiangying, Meng Fanteng, Luo Xin, et al. Fault Diagnosis and Detection Based on Efficiency Loss Test of Photovoltaic Power Station[C]//IOP Conference Series: Earth and Environmental Science. Bristol: IOP Publishing, 2020: 012060. |
| [3] | Baltacı Özge, Kıral Zeki, Dalkılınç Konuralp, et al. Thermal Image and Inverter Data Analysis for Fault Detection and Diagnosis of PV Systems[J]. Applied Sciences, 2024, 14(9): 3671. |
| [4] | 陈勇, 刘威. 基于无人机图像识别的光伏组件故障诊断系统研究[J]. 通讯世界, 2024, 31(9): 109-111. |
| [5] | Hong Yingyi, Pula Rolando A. Diagnosis of Photovoltaic Faults Using Digital Twin and PSO-optimized Shifted Window Transformer[J]. Applied Soft Computing, 2024, 150: 111092. |
| [6] | Meng B, Loonen R C G M, Hensen J L M. Leveraging Dynamic Power Benchmarks and CUSUM Charts for Enhanced Fault Detection in Distributed PV Systems[J]. Energy Conversion and Management, 2024, 314: 118692. |
| [7] | Ahmed Faris Amiri, Oudira Houcine, Chouder Aissa, et al. Faults Detection and Diagnosis of PV Systems Based on Machine Learning Approach Using Random Forest Classifier[J]. Energy Conversion and Management, 2024, 301: 118076. |
| [8] | Chahine Khaled. Tree-based Algorithms and Incremental Feature Optimization for Fault Detection and Diagnosis in Photovoltaic Systems[J]. Eng, 2025, 6(1): 20. |
| [9] | 王梦圆, 徐潇源, 严正. 适用小样本的并网光伏阵列故障诊断方法[J]. 电网技术, 2024, 48(2): 587-596. |
| Wang Mengyuan, Xu Xiaoyuan, Yan Zheng. Simultaneous Fault Diagnosis of PV Array Operation Considering Small Sample Sizes[J]. Power System Technology, 2024, 48(2): 587-596. | |
| [10] | 公铮, 丁家伟, 刘允浩, 等. 基于增量学习的光伏并网逆变器故障诊断[J]. 电力系统及其自动化学报, 2025, 37(2): 48-57. |
| Gong Zheng, Ding Jiawei, Liu Yunhao, et al. Fault Diagnosis of Photovoltaic Grid-connected Inverter Based on Incremental Learning[J]. Proceedings of the CSU-EPSA, 2025, 37(2): 48-57. | |
| [11] | 黄晨昊, 高伟. 基于超声波传感器与孤立森林的光伏系统串联电弧故障诊断方法[J]. 电气技术, 2025, 26(5): 10-16, 26. |
| Huang Chenhao, Gao Wei. Series Arc Fault Diagnosis Method for Photovoltaic System Based on Ultrasonic Sensor and Isolation Forest[J]. Electrical Engineering, 2025, 26(5): 10-16, 26. | |
| [12] | 李岩, 刘鑫月, 乔俊杰, 等. 基于1DCNN和D-S多信息融合的光伏系统直流母线串联电弧故障检测[J]. 电工电能新技术, 2024, 43(5): 58-67. |
| Li Yan, Liu Xinyue, Qiao Junjie, et al. Series Arc Fault Detection of DC Bus of Photovoltaic System Based on 1DCNN and D-S Multi-information Fusion[J]. Advanced Technology of Electrical Engineering and Energy, 2024, 43(5): 58-67. | |
| [13] | 钱倍奇, 陈谦, 李宗源, 等. 基于马尔可夫转换场与多头注意力机制的电能质量扰动分类方法[J]. 电网技术, 2024, 48(2): 721-729. |
| Qian Beiqi, Chen Qian, Li Zongyuan, et al. Power Quality Disturbances Classification Based on Markov Transition Field and Multi-head Attention[J]. Power System Technology, 2024, 48(2): 721-729. | |
| [14] | 刘沛津, 付雪峰, 孙浩峰, 等. 一种融合CNN与Transformer的高鲁棒性目标跟踪算法[J]. 系统仿真学报, 2024, 36(8): 1854-1868. |
| Liu Peijin, Fu Xuefeng, Sun Haofeng, et al. A Highly Robust Target Tracking Algorithm Merging CNN and Transformer[J]. Journal of System Simulation, 2024, 36(8): 1854-1868. | |
| [15] | 仝航, 杨燕, 江永全. 检测脑电癫痫的多头自注意力机制神经网络[J]. 计算机科学与探索, 2023, 17(2): 442-452. |
| Tong Hang, Yang Yan, Jiang Yongquan. Multi-head Self-attention Neural Network for Detecting EEG Epilepsy[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 442-452. | |
| [16] | 丰胜成, 郭继成, 付华, 等. 基于ISSA与GRU分位数回归的风电功率概率密度预测[J]. 电工电能新技术, 2023, 42(10): 55-65. |
| Feng Shengcheng, Guo Jicheng, Fu Hua, et al. Wind Power Probability Density Prediction Based on ISSA and GRU Quantile Regression[J]. Advanced Technology of Electrical Engineering and Energy, 2023, 42(10): 55-65. | |
| [17] | 余波, 高学军, 王灿, 等. 基于行波特征与KOA-CNN-BiGRU-AM的柔直输电线路故障诊断[J]. 电力工程技术, 2025, 44(2): 185-196. |
| Yu Bo, Gao Xuejun, Wang Can, et al. Fault Diagnosis of MMC-MTDC Based on Traveling Wave Characteristics and KOA-CNN-BiGRU-AM[J]. Electric Power Engineering Technology, 2025, 44(2): 185-196. | |
| [18] | 林云. 基于Transformer多头注意力机制的文本分类模型[J]. 现代信息科技, 2025, 9(6): 100-104. |
| Lin Yun. Text Classification Model Based on Transformer Multi-head Attention Mechanism[J]. Modern Information Technology, 2025, 9(6): 100-104. | |
| [19] | Xiao Yaning, Cui Hao, Ruba Abu Khurma, et al. Artificial Lemming Algorithm: a Novel Bionic Meta-heuristic Technique for Solving Real-world Engineering Optimization Problems[J]. Artificial Intelligence Review, 2025, 58(3): 84. |
| [20] | 李鹏, 陈守静, 杨山山, 等. 基于Logistic映射的果蝇算法优化Otsu图像分割方法[J]. 国外电子测量技术, 2022, 41(7): 9-17. |
| Li Peng, Chen Shoujing, Yang Shanshan, et al. Otsu Image Segmentation Method Optimized by Fruit Fly Optimization Algorithm Based on Logistic Mapping[J]. Foreign Electronic Measurement Technology, 2022, 41(7): 9-17. | |
| [21] | 李丹丹, 朱石磊, 李仲康, 等. 多策略融合的改进金豺优化算法[J]. 传感器与微系统, 2025, 44(1): 127-130. |
| Li Dandan, Zhu Shilei, Li Zhongkang, et al. Multi-strategy Fusion Improved Golden Jackal Optimization Algorithm[J]. Transducer and Microsystem Technologies, 2025, 44(1): 127-130. | |
| [22] | 傅洪全, 田丰伟, 周磊, 等. 光伏发电系统中的设备故障与对策分析[J]. 集成电路应用, 2024, 41(7): 182-183. |
| Fu Hongquan, Tian Fengwei, Zhou Lei, et al. Analysis of Equipment Faults and Countermeasures in Photovoltaic Power Generation Systems[J]. Application of IC, 2024, 41(7): 182-183. | |
| [23] | 石凯, 李光明, 吴甫, 等. 光伏发电系统电气设备故障原因及处理措施分析[J]. 太阳能, 2023(3): 58-67. |
| Shi Kai, Li Guangming, Wu Fu, et al. Analysis on Causes and Treatment Measures of Electrical Equipment Failure in PV Power Generation System[J]. Solar Energy, 2023(3): 58-67. |
| [1] | 江伦, 王大江, 孙文磊, 包胜辉, 刘涵, 常赛科. 基于数字孪生的变压器故障诊断方法研究[J]. 系统仿真学报, 2025, 37(3): 775-790. |
| [2] | 袁标, 黄友锐, 徐善永, 荣雪. 光纤二次套塑车间数字孪生系统的构建与应用[J]. 系统仿真学报, 2023, 35(9): 2011-2022. |
| [3] | 张文锋, 祝志超, 吴定会. 基于加权域适应卷积神经网络的滚动轴承故障诊断[J]. 系统仿真学报, 2023, 35(11): 2445-2453. |
| [4] | 刘家瑞, 杨国田, 王孝伟. 基于孪生深度神经网络的风电机组故障诊断方法[J]. 系统仿真学报, 2022, 34(11): 2348-2358. |
| [5] | 祝志超, 吴定会, 岳远昌. 基于监督核熵成分分析的发动机磨损故障诊断[J]. 系统仿真学报, 2022, 34(1): 45-52. |
| [6] | 李元, 耿泽伟. 基于LLE与K均值聚类算法的工业过程故障诊断[J]. 系统仿真学报, 2021, 33(9): 2066-2073. |
| [7] | 王印松, 孙天舒. 基于二分类NMF网络的执行器故障状态评估[J]. 系统仿真学报, 2021, 33(8): 1882-1891. |
| [8] | 位晶晶, 刘勤明, 叶春明, 李冠林. 基于GA-SVR的小样本数据缺失下的设备故障诊断[J]. 系统仿真学报, 2021, 33(6): 1342-1349. |
| [9] | 吴定会, 祝志超, 韩欣宏. 基于BO-SDAE多源信号的风电机组轴承故障诊断[J]. 系统仿真学报, 2021, 33(5): 1148-1156. |
| [10] | 李炜, 周丙相, 蒋栋年. 基于深度学习序贯检验的电源车故障诊断方法[J]. 系统仿真学报, 2020, 32(4): 638-648. |
| [11] | 樊名鲁, 王艳, 纪志成. 基于特征生成的轴承不均衡数据故障诊断[J]. 系统仿真学报, 2020, 32(12): 2438-2448. |
| [12] | 李炜, 葛振福, 申富媛, 龚建兴. 基于FDRE的3D威亚编码器故障检测与容错控制[J]. 系统仿真学报, 2019, 31(4): 740-749. |
| [13] | 贾立山, 刘喆, 孙毅. 基于RMBP神经网络的飞机电气故障智能诊断[J]. 系统仿真学报, 2018, 30(9): 3493-3501. |
| [14] | 孙凯, 何柏娜, SarahOdofin, 谷雨. 矢量控制系统中感应电机电流传感器故障诊断[J]. 系统仿真学报, 2018, 30(8): 3139-3145. |
| [15] | 沈艳霞, 苗贝贝. 三电平逆变器的开关管开路故障诊断策略[J]. 系统仿真学报, 2018, 30(8): 3058-3065. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||