系统仿真学报 ›› 2024, Vol. 36 ›› Issue (5): 1141-1151.doi: 10.16182/j.issn1004731x.joss.23-0012

• 研究论文 • 上一篇    下一篇

多机任务分配与路径规划协同优化法研究

肖鹏1(), 谢锋2, 倪海鸿1, 张敏1, 汤志荔1,3, 李霓1,3()   

  1. 1.西北工业大学 航空学院, 陕西 西安 710072
    2.中国航空工业集团公司 成都飞机设计研究所, 四川 成都 610091
    3.西安市飞行器智能认知与控制重点实验室, 陕西 西安 710072
  • 收稿日期:2023-01-04 修回日期:2023-02-14 出版日期:2024-05-15 发布日期:2024-05-21
  • 通讯作者: 李霓 E-mail:2018294150@qq.com;lini@nwpu.edu.cn
  • 第一作者简介:肖鹏(1997-),男,硕士,研究方向为多无人机智能协同。E-mail:2018294150@qq.com
  • 基金资助:
    国家自然科学基金(62003272);特色学科基础研究(G2022WD)

Research on Collaborative Optimization Method of Multi-UAV Task Allocation and Path Planning

Xiao Peng1(), Xie Feng2, Ni Haihong1, Zhang Min1, Tang Zhili1,3, Li Ni1,3()   

  1. 1.School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
    2.Chengdu Aircraft Design and Research Institute, Aviation Industry Corporation of China, Chengdu 610091, China
    3.Xi’an Key Laboratory of Intelligent Cognition and Control of Aircraft, Xi’an 710072, China
  • Received:2023-01-04 Revised:2023-02-14 Online:2024-05-15 Published:2024-05-21
  • Contact: Li Ni E-mail:2018294150@qq.com;lini@nwpu.edu.cn

摘要:

针对多无人机执行多目标协同侦察的任务需求,提出了多机多目标任务分配与路径规划的协同优化方法。以单亲遗传算法(partheno genetic algorithms, PGA)为基础,基于Dubins曲线构建了与实际路径代价相结合的代价函数;为进一步减小计算量,提出了基于无人机探测距离的聚类算法将生成的聚类点作为无人机新的航路点。仿真结果表明:在考虑禁飞区域以及侦察点繁多情况下,该算法能够有效完成无人机的侦察任务分配并同时形成初步航路,提高了任务分配的合理性和收敛速度,并降低了全局代价。

关键词: 多机协同, 单亲遗传算法, 任务聚类, 任务分配, 航路规划, 协同优化

Abstract:

Aiming at the task requirements of multi-UAV to perform multi-target collaborative reconnaissance, a collaborative optimization method of multi-machine and multi-objective task allocation and path planning is proposed. Based on the partheno genetic algorithms (PGA), a cost function combined with the actual path cost is constructed through the Dubins curve. To further reduce the calculation cost, a clustering algorithm based on UAV detection distance is proposed, and the generated clustering point is used as a new waypoint of UAV. The simulation results show that considering the dangerous area and the large number of reconnaissance points, the algorithm can effectively complete the reconnaissance task allocation of the UAV and at the same time form a preliminary route. It improves the rationality and convergence speed of task assignment, and reduces the overall cost.

Key words: multi-UAV coordination, partheno genetic algorithms(PGA), task clustering, task allocation, path planning, collaborative optimization

中图分类号: