| [1] |
Chiplunkar R, Huang Biao. Siamese Neural Network-based Supervised Slow Feature Extraction for Soft Sensor Application[J]. IEEE Transactions on Industrial Electronics, 2021, 68(9): 8953-8962.
|
| [2] |
Fortuna L, Graziani S, Rizzo A, et al. Soft Sensors for Monitoring and Control of Industrial Processes[M]. London: Springer, 2007: 27-51.
|
| [3] |
熊伟丽, 孙文心, 马君霞. 带自相关约束的NARX动态软测量模型[J]. 控制与决策, 2020, 35(4): 816-822.
|
|
Xiong Weili, Sun Wenxin, Ma Junxia. Autocorrelation Constrained NARX Dynamic Soft Sensing Model[J]. Control and Decision, 2020, 35(4): 816-822.
|
| [4] |
代学志, 熊伟丽. 基于概率选择的主动学习智能软测量建模[J]. 系统仿真学报, 2021, 33(6): 1350-1357.
|
|
Dai Xuezhi, Xiong Weili. Active Learning Intelligent Soft Sensor Based on Probability Selection[J]. Journal of System Simulation, 2021, 33(6): 1350-1357.
|
| [5] |
Guo Runyuan, Liu Han. A Hybrid Mechanism-and Data-driven Soft Sensor Based on the Generative Adversarial Network and Gated Recurrent Unit[J]. IEEE Sensors Journal, 2021, 21(22): 25901-25911.
|
| [6] |
周平, 张丽, 李温鹏, 等. 集成自编码与PCA的高炉多元铁水质量随机权神经网络建模[J]. 自动化学报, 2018, 44(10): 1799-1811.
|
|
Zhou Ping, Zhang Li, Li Wenpeng, et al. Autoencoder and PCA Based RVFLNs Modeling for Multivariate Molten Iron Quality in Blast Furnace Ironmaking[J]. Acta Automatica Sinica, 2018, 44(10): 1799-1811.
|
| [7] |
Xie Xiaochen, Sun Wei, Cheung K C. An Advanced PLS Approach for Key Performance Indicator-related Prediction and Diagnosis in Case of Outliers[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2587-2594.
|
| [8] |
耿增显, 柴天佑. 基于LS-SVM的浮选过程工艺技术指标软测量[J]. 系统仿真学报, 2008, 20(23): 6321-6324.
|
|
Geng Zengxian, Chai Tianyou. Soft Sensor of Technical Indices Based on LS-SVM for Flotation Process[J]. Journal of System Simulation, 2008, 20(23): 6321-6324.
|
| [9] |
Yan Weiwu, Tang Di, Lin Yujun. A Data-driven Soft Sensor Modeling Method Based on Deep Learning and Its Application[J]. IEEE Transactions on Industrial Electronics, 2017, 64(5): 4237-4245.
|
| [10] |
Yao Le, Ge Zhiqiang. Deep Learning of Semisupervised Process Data with Hierarchical Extreme Learning Machine and Soft Sensor Application[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1490-1498.
|
| [11] |
徐芳萍, 杨辉, 陈俊, 等. 基于迁移学习与残差注意力卷积网络的稀土元素组分含量软测量[J]. 化工学报, 2025, 76(4): 1647-1660.
|
|
Xu Fangping, Yang Hui, Chen Jun, et al. Soft Sensor of Rare Earth Element Content with Transfer Learning and Residual Attention Convolutional Neural Network[J]. CIESC Journal, 2025, 76(4): 1647-1660.
|
| [12] |
Ma Fangyuan, Ji Cheng, Wang Jingde, et al. Early Identification of Process Deviation Based on Convolutional Neural Network[J]. Chinese Journal of Chemical Engineering, 2023, 56: 104-118.
|
| [13] |
Yuan Xiaofeng, Qi Shuaibin, A W Shardt Yuri, et al. Soft Sensor Model for Dynamic Processes Based on Multichannel Convolutional Neural Network[J]. Chemometrics and Intelligent Laboratory Systems, 2020, 203: 104050.
|
| [14] |
Zhao Yingying, He Yigang, Xing Zhikai, et al. Multibranch 1-D CNN Based on Attention Mechanism for the DAB Converter Fault Diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-12.
|
| [15] |
Fang Chenyu, He Dakuo, Li Kang, et al. Image-based Thickener Mud Layer Height Prediction with Attention Mechanism-based CNN[J]. ISA Transactions, 2022, 128, Part B: 677-689.
|
| [16] |
黄婉蓉, 何凯, 刘坤, 等. 基于注意力机制的手写体中文字符识别[J]. 激光与光电子学进展, 2020, 57(8): 29-34.
|
|
Huang Wanrong, He Kai, Liu Kun, et al. Handwritten Chinese Character Recognition Based on Attention Mechanism[J]. Laser & Optoelectronics Progress, 2020, 57(8): 29-34.
|
| [17] |
Vaswani A, Shazeer N, Parmar N, et al. Attention is All You Need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010.
|
| [18] |
Geng Zhiqiang, Chen Zhiwei, Meng Qingchao, et al. Novel Transformer Based on Gated Convolutional Neural Network for Dynamic Soft Sensor Modeling of Industrial Processes[J]. IEEE Transactions on Industrial Informatics, 2022, 18(3): 1521-1529.
|
| [19] |
Chang Peng, Zhang Shirao, Wang Zichen. Soft Sensor of the Key Effluent Index in the Municipal Wastewater Treatment Process Based on Transformer[J]. IEEE Transactions on Industrial Informatics, 2024, 20(3): 4021-4028.
|
| [20] |
Tay Y, Dehghani Mostafa, Bahri D. Efficient Transformers: A Survey[J]. ACM Computing Surveys, 2022, 55(6): 109.
|
| [21] |
Zha Wenshu, Liu Yuping, Wan Yujin, et al. Forecasting Monthly Gas Field Production Based on the CNN-LSTM Model[J]. Energy, 2022, 260: 124889.
|
| [22] |
Li Chang, Huang Xiaoyang, Song Rencheng, et al. EEG-based Seizure Prediction via Transformer Guided CNN[J]. Measurement, 2022, 203: 111948.
|
| [23] |
Friedman J H. Multivariate Adaptive Regression Splines[J]. The Annals of Statistics, 1991, 19(1): 1-67.
|
| [24] |
Meng Yanmei, Lan Qiliang, Qin J, et al. Data-driven Soft Sensor Modeling Based on Twin Support Vector Regression for Cane Sugar Crystallization[J]. Journal of Food Engineering, 2019, 241: 159-165.
|
| [25] |
何罗苏阳, 熊伟丽. 助训练策略下的多模型软测量建模[J]. 系统仿真学报, 2024, 36(1): 249-259.
|
|
He Luosuyang, Xiong Weili. Multi-model Soft Sensor Modeling Under Help-training Strategy[J]. Journal of System Simulation, 2024, 36(1): 249-259.
|
| [26] |
Fortuna L, Graziani S, Xibilia M G. Soft Sensors for Product Quality Monitoring in Debutanizer Distillation Columns[J]. Control Engineering Practice, 2005, 13(4): 499-508.
|