系统仿真学报 ›› 2025, Vol. 37 ›› Issue (10): 2454-2468.doi: 10.16182/j.issn1004731x.joss.25-0389

• 新型电力系统和综合能源系统仿真技术 • 上一篇    

大型风电机组齿轮箱多尺度特性深度学习建模

胡阳1,2, 李梓豪2, 付德义3, 宋子秋1,2, 房方1,2, 刘吉臻1,2   

  1. 1.新能源电力系统全国重点实验室(华北电力大学),北京 102206
    2.华北电力大学 控制与计算机工程学院,北京 102206
    3.中国电力科学研究院有限公司,北京 100192
  • 收稿日期:2025-05-07 修回日期:2025-09-11 出版日期:2025-10-20 发布日期:2025-10-21
  • 通讯作者: 宋子秋
  • 第一作者简介:胡阳(1986-),男,副教授,博士,研究方向为新能源发电过程建模与控制。
  • 基金资助:
    国家重点研发计划(2023YFB4203000)

Deep Learning Modeling of Multi-scale Characteristics of Large-scale Wind Turbine Gearbox

Hu yang1,2, Li Zihao2, Fu Deyi3, Song Ziqiu1,2, Fang Fang1,2, Liu Jizhen1,2   

  1. 1.State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
    2.School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
    3.China Electric Power Research Institute, Beijing 100192, China
  • Received:2025-05-07 Revised:2025-09-11 Online:2025-10-20 Published:2025-10-21
  • Contact: Song Ziqiu

摘要:

针对风电机组齿轮箱在高频振动特性表征困难、刚柔耦合多体动力学模型求解时间过长、齿轮箱模型在多场景下配置复杂等问题,提出一种基于全工况数字化测试的齿轮箱多尺度运行特性深度学习建模方法。提出了一种基于流式数据驱动的OpenFAST与Adams级联扩展式仿真方案,利用动态模态分解技术,构建了风电机组全工况下齿轮箱柔性多体动力学特性的多尺度数据集;基于该数据集,采用TimeMixer深度学习算法构建了一个多振动模态、多时间尺度的齿轮箱运行特性数字代理模型。仿真实验结果表明:所建风电机组齿轮箱深度学习代理模型能够准确反映齿轮箱在多种典型工况下的振动特性、载荷特性和动力学行为,且计算效率、仿真精度和变工况适应性得以提升。

关键词: 风电机组, 深度学习代理模型, 齿轮箱多体动力学, 多模态振动, 多时间尺度

Abstract:

To address challenges in characterizing high-frequency vibrations of wind turbine gearboxes, the long computation time of rigid-flexible coupled multi-body dynamics models, and the complexity of configuring gearbox models across multiple scenarios, this study proposed a deep learning modeling method for multi-scale operation using full-condition digital testing. The study proposed a cascaded extended simulation scheme based on stream data-driven OpenFAST and Adams and utilized dynamic mode decomposition technology to construct a multi-scale dataset for the flexible multi-body dynamics characteristics of the gearbox under all operating conditions of the wind turbine. Based on this dataset, a digital surrogate model covering multiple vibration modes and time scales was constructed using the TimeMixer deep learning algorithm. The simulation experiment results show that the deep learning surrogate model for the wind turbine gearbox has the ability to accurately reflect the vibration characteristics, load characteristics, and dynamic behaviors of the gearbox under various typical working conditions. Moreover, the computational efficiency, simulation accuracy, and adaptability to variable working conditions have been improved.

Key words: wind turbine, deep learning surrogate model, gearbox multi-body dynamics, multimodal vibration, multi-time scale

中图分类号: