系统仿真学报 ›› 2024, Vol. 36 ›› Issue (9): 2065-2074.doi: 10.16182/j.issn1004731x.joss.23-0588

• 研究论文 • 上一篇    

基于自动睡眠分期的多模态残差时空融合模型

郭业才1,2, 仝爽1   

  1. 1.南京信息工程大学 电子与信息工程学院,江苏 南京 210044
    2.无锡学院 电子信息工程学院,江苏 无锡 214105
  • 收稿日期:2023-05-18 修回日期:2023-08-24 出版日期:2024-09-15 发布日期:2024-09-30
  • 第一作者简介:郭业才(1962-),男,教授,博士,研究方向为通信信号处理、水声信号处理等。
  • 基金资助:
    国家自然科学基金(61673222)

A Multimodal Residual Spatial-temporal Fusion Model Based on Automatic Sleep Classification

Guo Yecai1,2, Tong Shuang1   

  1. 1.School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
    2.School of Electronics and Information Engineering, Wuxi University, Wuxi 214105, China
  • Received:2023-05-18 Revised:2023-08-24 Online:2024-09-15 Published:2024-09-30

摘要:

高精度的睡眠分期对于正确评定睡眠情况起到了至关重要的作用。针对现有的卷积网络无法获取生理信号拓扑特征的问题,提出了一种基于多模态残差时空融合的睡眠分期算法。利用短时傅里叶变换和自适应图卷积获取时频图像和时空图像,将其转换为高维的特征向量;通过时频特征和时空特征提取模块实现特征信息流的轻量化交互;使用特征增强融合模块融合特征信息,输出睡眠分期结果。结果表明:该模型具有较高的准确率,在ISRUC-S3数据集上整体准确率为85.3%,F1分数为83.8%,Cohen's kappa为81%,N1阶段准确率达到69.81%。ISRUC-S1数据集上的实验证明了模型的普遍性。

关键词: 睡眠分期, 多视图融合, 图卷积网络, 深度学习, 脑电信号

Abstract:

Highly accurate sleep staging plays a crucial role in correctly assessing sleep conditions. Aiming at the problem that the existing convolutional network cannot obtain the topological characteristics of physiological signals, a sleep staging algorithm based on multi-modal residual spatio-temporal fusion is proposed. Time-frequency images and spatio-temporal images are obtained using short-time Fourier transform and adaptive map convolution, which are converted into high-dimensional feature vectors; lightweight interaction of feature information flow is realized through time-frequency feature and spatio-temporal feature extraction modules; the feature enhancement fusion module fuses feature information to outputs sleep staging results. The results show that the model has a high accuracy. On the ISRUC-S3 data set, the overall accuracy is 85.3%, the F1 score is 83.8%, Cohen’s kappa is 81%, and the N1 stage accuracy reaches 69.81%. Experiments on the ISRUC-S1 dataset demonstrate the generality of the model.

Key words: sleep staging, multi-view fusion, graph convolutional network, deep learning, electroencephalogram

中图分类号: