系统仿真学报 ›› 2023, Vol. 35 ›› Issue (11): 2333-2344.doi: 10.16182/j.issn1004731x.joss.22-0690
赵为平1,2(
), 陈雨2(
), 项松1, 刘远强1, 王超越1
收稿日期:2022-06-17
修回日期:2022-08-16
出版日期:2023-11-25
发布日期:2023-11-24
通讯作者:
陈雨
E-mail:3370477370@qq.com;1009857106@qq.com
第一作者简介:赵为平(1968-),男,副教授,博士,研究方向为飞行器设计、图像处理。E-mail:3370477370@qq.com
基金资助:
Zhao Weiping1,2(
), Chen Yu2(
), Xiang Song1, Liu Yuanqiang1, Wang Chaoyue1
Received:2022-06-17
Revised:2022-08-16
Online:2023-11-25
Published:2023-11-24
Contact:
Chen Yu
E-mail:3370477370@qq.com;1009857106@qq.com
摘要:
目前主流图像语义分割网络往往存在误分割、分割不连续和模型复杂度高的问题,不能灵活高效地部署于实际场景中。针对这一现象,通过综合考虑网络的参数量、预测时间和准确度,设计出一种优化DeepLabv3+模型的图像语义分割网络。骨干网络改用轻量级EfficientNetv2网络提取特征,提高参数利用率;在空洞空间金字塔池化模块中使用混合条带池化模块代替全局平均池化,引入深度可分离膨胀卷积,减少参数量和提高学习多尺度信息的能力;使用注意力机制增强模型表征力,提取骨干网络多条浅层特征,丰富图像的几何细节信息。实验表明,本文算法可达到mIoU为81.19%,参数量为55.51×106,有效优化了分割精度和模型复杂度,同时也提高了模型泛化性。
中图分类号:
赵为平,陈雨,项松等 . 基于改进的DeepLabv3+图像语义分割算法研究[J]. 系统仿真学报, 2023, 35(11): 2333-2344.
Zhao Weiping,Chen Yu,Xiang Song,et al . Image Semantic Segmentation Algorithm Based on Improved DeepLabv3+[J]. Journal of System Simulation, 2023, 35(11): 2333-2344.
| 1 | Wang Lei, Wu Jiaji, Liu Xunyu, et al. Semantic Segmentation of Large-scale Point Clouds Based on Dilated Nearest Neighbors Graph[J]. Complex & Intelligent Systems, 2022, 8(5): 3833-3845. |
| 2 | 田萱, 王亮, 丁琪. 基于深度学习的图像语义分割方法综述[J]. 软件学报, 2019, 30(2): 440-468. |
| Tian Xuan, Wang Liang, Ding Qi. Review of Image Semantic Segmentation Based on Deep Learning[J]. Journal of Software, 2019, 30(2): 440-468. | |
| 3 | Asgari Taghanaki S, Abhishek K, Cohen J P, et al. Deep Semantic Segmentation of Natural and Medical Images: A Review[J]. Artificial Intelligence Review, 2021, 54(1): 137-178. |
| 4 | Yuan Xiaohui, Shi Jianfang, Gu Lichuan. A Review of Deep Learning Methods for Semantic Segmentation of Remote Sensing Imagery[J]. Expert Systems with Applications, 2021, 169: 114417. |
| 5 | 王奕清. 基于计算机视觉的卫星云图反演降水量方法研究[D]. 成都: 电子科技大学, 2021. |
| Wang Yiqing. A Computer Vision Method for Precipitation Inversion With Satellite Cloud Images[D]. Chengdu: University of Electronic Science and Technology of China, 2021. | |
| 6 | Ivanovs M, Ozols K, Dobrajs A, et al. Improving Semantic Segmentation of Urban Scenes for Self-driving Cars with Synthetic Images[J]. Sensors, 2022, 22(6): 2252. |
| 7 | Kontschieder P, Samuel Rota Bulò, Bischof H, et al. Structured Class-labels in Random Forests for Semantic Image Labelling[C]//2011 International Conference on Computer Vision. Piscataway, NJ, USA: IEEE, 2011: 2190-2197. |
| 8 | Martijn van den Heuvel, Mandl R, Hulshoff Pol H. Normalized Cut Group Clustering of Resting-state FMRI Data[J]. PLoS One, 2008, 3(4): e2001. |
| 9 | Cherkassky V, Ma Yunqian. Practical Selection of SVM Parameters and Noise Estimation for SVM Regression[J]. Neural Networks, 2004, 17(1): 113-126. |
| 10 | Hu Yaosi, Chen Zhenzhong, Lin Weiyao. RGB-D Semantic Segmentation: A Review[C]//2018 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). Piscataway, NJ, USA: IEEE, 2018: 1-6. |
| 11 | Kamilaris A, Prenafeta-Boldú Francesc X. Deep Learning in Agriculture: A Survey[J]. Computers and Electronics in Agriculture, 2018, 147: 70-90. |
| 12 | 刘瑞军, 王向上, 张晨, 等. 基于深度学习的视觉SLAM综述[J]. 系统仿真学报, 2020, 32(7): 1244-1256. |
| Liu Ruijun, Wang Xiangshang, Zhang Chen, et al. A Survey on Visual SLAM Based on Deep Learning[J]. Journal of System Simulation, 2020, 32(7): 1244-1256. | |
| 13 | 罗荣, 王亮, 肖玉杰. 深度学习技术应用现状分析与发展趋势研究[J]. 计算机教育, 2019(10): 19-22. |
| 14 | Yu Changqian, Wang Jingbo, Peng Chao, et al. BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation[C]//Computer Vision – ECCV 2018. Cham: Springer International Publishing, 2018: 334-349. |
| 15 | Zhang Fan, Chen Yanqin, Li Zhihang, et al. ACFNet: Attentional Class Feature Network for Semantic Segmentation[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, NJ, USA: IEEE, 2019: 6797-6806. |
| 16 | Wu Tianyi, Tang Sheng, Zhang Rui, et al. CGNet: A Light-weight Context Guided Network for Semantic Segmentation[J]. IEEE Transactions on Image Processing, 2021, 30: 1169-1179. |
| 17 | Zhao Yaochi, Liu Shiguang, Hu Zhuhua. Focal Learning on Stranger for Imbalanced Image Segmentation[J]. IET Image Processing, 2022, 16(5): 1305-1323. |
| 18 | Zhao Yaochi, Liu Shiguang, Hu Zhuhua. Dynamically Balancing Class Losses in Imbalanced Deep Learning[J]. Electronics Letters, 2022, 58(5): 203-206. |
| 19 | Long J, Shelhamer E, Darrell T. Fully Convolutional Networks for Semantic Segmentation[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2015: 3431-3440. |
| 20 | Guo Yanming, Liu Yu, Georgiou T, et al. A Review of Semantic Segmentation Using Deep Neural Networks[J]. International Journal of Multimedia Information Retrieval, 2018, 7(2): 87-93. |
| 21 | Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-decoder Architecture for Image Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. |
| 22 | Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Cham: Springer International Publishing, 2015: 234-241. |
| 23 | Schönfeld Edgar, Schiele B, Khoreva A. A U-net Based Discriminator for Generative Adversarial Networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2020: 8204-8213. |
| 24 | Jaeger P F, Kohl S A A, Bickelhaupt S, et al. Retina U-net: Embarrassingly Simple Exploitation of Segmentation Supervision for Medical Object Detection[C]//Proceedings of the Machine Learning for Health NeurIPS Workshop. Chia Laguna Resort, Sardinia, Italy: PMLR, 2020: 171-183. |
| 25 | Chen L C, Papandreou G, Kokkinos I, et al. Semantic Image Segmentation With Deep Convolutional Nets and Fully Connected CRFs[EB/OL]. (2016-06-07) [2022-05-30]. . |
| 26 | Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-scale Image Recognition[EB/OL]. (2015-04-10) [2022-05-30]. . |
| 27 | Chen L C, Papandreou G, Kokkinos I, et al. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. |
| 28 | Chen L C, Papandreou G, Schroff F, et al. Rethinking Atrous Convolution for Semantic Image Segmentation[EB/OL]. (2017-12-05) [2022-05-30]. . |
| 29 | Chen L C, Zhu Yukun, Papandreou G, et al. Encoder-decoder With Atrous Separable Convolution for Semantic Image Segmentation[C]//Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 833-851. |
| 30 | Tan Mingxing, Le Q. EfficientNetV2: Smaller Models and Faster Training[C]//Proceedings of the 38th International Conference on Machine Learning. Chia Laguna Resort, Sardinia, Italy: PMLR, 2021: 10096-10106. |
| 31 | Tan Mingxing, Le Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks[C]//Proceedings of the 36th International Conference on Machine Learning. Chia Laguna Resort, Sardinia, Italy: PMLR, 2019: 6105-6114. |
| 32 | Hou Qibin, Zhang Li, Cheng Mingming, et al. Strip Pooling: Rethinking Spatial Pooling for Scene Parsing[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2020: 4002-4011. |
| 33 | Liu Yichao, Shao Zongru, Teng Yueyang, et al. NAM: Normalization-based Attention Module[EB/OL]. (2021-11-24) [2022-05-30]. . |
| 34 | Hu Jie, Shen Li, Sun Gang. Squeeze-and-excitation Networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2018: 7132-7141. |
| 35 | Woo S, Park J, Lee J Y, et al. CBAM: Convolutional Block Attention Module[C]//Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 3-19. |
| [1] | 董庆庆, 吴昊, 钱文华, 孔凤玲. 基于交叉细化和循环注意力的RGB-D显著性目标检测[J]. 系统仿真学报, 2023, 35(9): 1931-1947. |
| [2] | 于豪, 蒋锦霞, 赖晓翰, 梅峰, 王庆. 基于自适应感受野的电力设备表面缺陷检测方法[J]. 系统仿真学报, 2023, 35(7): 1572-1580. |
| [3] | 魏赟, 罗琦, 赵迎志. 基于自适应融合和注意力细化的语义分割模型[J]. 系统仿真学报, 2023, 35(6): 1226-1234. |
| [4] | 石鼎, 燕雪峰, 宫丽娜, 张静宣, 关东海, 魏明强. 强化学习驱动的海战场多智能体协同作战仿真算法[J]. 系统仿真学报, 2023, 35(4): 786-796. |
| [5] | 向南, 王璐, 贾崇柳, 蹇越谋, 马小霞. 改进YOLO的遮挡行人检测仿真[J]. 系统仿真学报, 2023, 35(2): 286-299. |
| [6] | 孙红, 张玉香, 凌岳览. 基于损失提取反馈注意网络的图像超分辨率重建研究[J]. 系统仿真学报, 2023, 35(2): 308-317. |
| [7] | 金炜东, 张述礼, 唐鹏, 张曼. 基于稠密残差块与通道像素注意力的图像去雾网络[J]. 系统仿真学报, 2022, 34(8): 1663-1673. |
| [8] | 邱俊杰, 郑红, 程云辉. 基于多尺度LSTM预测模型研究[J]. 系统仿真学报, 2022, 34(7): 1593-1604. |
| [9] | 王银, 王飞翔, 孙前来. 多尺度特征融合车辆检测方法[J]. 系统仿真学报, 2022, 34(6): 1219-1229. |
| [10] | 沈祺宗, 高春艳. 融合边缘检测模块的自然地貌语义分割模型研究[J]. 系统仿真学报, 2022, 34(2): 293-302. |
| [11] | 孙红, 凌岳览, 张玉香. 融合边界监督策略的改进特征金字塔算法研究[J]. 系统仿真学报, 2022, 34(10): 2119-2129. |
| [12] | 陈立家, 王凯, 李世刚, 田延飞. 基于航空影像的航海模拟器视景快速建模方法[J]. 系统仿真学报, 2021, 33(7): 1565-1573. |
| [13] | 尹诗, 侯国莲, 迟岩, 弓林娟, 胡晓东. 风电机组发电机前轴承健康度预测方法及实现[J]. 系统仿真学报, 2021, 33(6): 1323-1333. |
| [14] | 徐胜, 冯文宇, 刘志诚, 涂鑫涛, 费敏锐, 张堃. 基于机器视觉的复杂环境下精确手势识别算法研究[J]. 系统仿真学报, 2021, 33(10): 2460-2469. |
| [15] | 孔亦思, 胡晓峰, 朱丰, 陶九阳. 战场态势感知中的注意力机制探析[J]. 系统仿真学报, 2017, 29(10): 2233-2241. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||