系统仿真学报 ›› 2025, Vol. 37 ›› Issue (11): 2812-2825.doi: 10.16182/j.issn1004731x.joss.25-0334

• 论文 • 上一篇    

基于神经网络-遗传规划的布尔网络模型优化

唐金琳1, 王艳1, 刘相1, 王团结2, 纪志成1   

  1. 1.江南大学 物联网工程学院,江苏 无锡 214122
    2.中药制药过程控制与智能制造技术全国重点实验室,江苏 连云港 222043
  • 收稿日期:2025-04-22 修回日期:2025-06-25 出版日期:2025-11-18 发布日期:2025-11-27
  • 通讯作者: 王艳
  • 第一作者简介:唐金琳(2000-),女,硕士生,研究方向为布尔网络推理与建模。
  • 基金资助:
    长三角科技创新共同体联合攻关计划(2023CSJGG1700);江苏省基础研究计划(BK20231037)

Boolean Network Model Optimization Based on Neural Network and Genetic Programming

Tang Jinlin1, Wang Yan1, Liu Xiang1, Wang Tuanjie2, Ji Zhicheng1   

  1. 1.School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China
    2.State Key Laboratory of Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang 222043, China
  • Received:2025-04-22 Revised:2025-06-25 Online:2025-11-18 Published:2025-11-27
  • Contact: Wang Yan

摘要:

针对大规模布尔网络推理中节点关系复杂、现有算法精度不足的问题,提出一种结合长短期记忆(long short-term memory, LSTM)网络与遗传规划的新型优化算法。采用基于自注意力机制(self-attention)的增强LSTM网络,从时间序列数据中挖掘潜在调控节点;以这些节点作为语法树(syntax tree, ST)的终端设计遗传规划算法,并引入新运算符优化布尔函数搜索。实验表明:该方法在推理精度上显著优于现有算法。布尔网络模型优化算法为复杂网络动态行为的建模与仿真提供了有效工具。

关键词: 布尔网络, 时间序列推断, LSTM, 自注意力机制, 遗传规划

Abstract:

To address the issues of complex node relationships and low accuracy in large-scale Boolean network inference, a new optimization algorithm integrated with long short-term memory (LSTM) networks and genetic programming was proposed. An enhanced LSTM network combined with a self-attention mechanism was designed to extract potential regulatory nodes from time-series data. These nodes were utilized as terminals of the syntax tree for the design of the genetic programming algorithm, and new operators were introduced to optimize Boolean function search. Experimental results have demonstrated that the proposed method significantly outperforms the most advanced existing algorithms in inference accuracy. The Boolean network optimization algorithm provides an effective tool for modeling and simulating dynamic behaviors in complex networks.

Key words: Boolean network, time-series inference, LSTM, self-attention mechanism, genetic programming

中图分类号: