系统仿真学报 ›› 2018, Vol. 30 ›› Issue (11): 4492-4497.doi: 10.16182/j.issn1004731x.joss.201811053

• 短文 • 上一篇    

基于多域融合CNN的高速列车转向架故障检测

吴昀璞, 金炜东, 黄颖坤   

  1. 西南交通大学电气工程学院,四川 成都 610031
  • 收稿日期:2018-05-25 修回日期:2018-07-12 发布日期:2019-01-04
  • 作者简介:吴昀璞(1991-),男,江苏,博士生,研究方向为故障诊断,贝叶斯深度学习等;金炜东(1959-),男,安徽,博士,教授,博导,研究方向为智能信息处理,系统仿真与优化方法等。

Fault Diagnosis of High Speed Train Bogie Based on Multi-domain Fusion CNN

Wu Yunpu, Jin Weidong, Huang Yingkun   

  1. School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China
  • Received:2018-05-25 Revised:2018-07-12 Published:2019-01-04

摘要: 高速列车转向架在服役运行中发生构件的性能退化和各类故障会严重威胁到列车的运行安全。针对高速列车振动信号的高复杂度、高耦合和强非线性,提出一种基于多域融合卷积神经网络的转向架故障检测方法,对于时域信号进行噪声注入以增强噪声鲁棒性与模型泛化性能,使用内嵌时频变换层获取信号时频表示信息,对于获得的多域多通道信息,利用卷积神经网络的固有特性实现自适应权重特征融合。实验结果表明,提出的方法提高了高速列车转向架故障诊断的准确率,同时具有较强的噪声鲁棒性与工况适应性。

关键词: 高速列车转向架, 故障诊断, 多域融合, 卷积神经网络

Abstract: The performance degradation and failures of high-speed train bogie components directly threaten the operation security of train. A fault detection method based on multi-domain fusion convolutional neural network is proposed to address the high complexity, high coupling and strong nonlinearity of vibration signals. Noise injection for time domain signal is used to enhance noise robustness and generalization of the model. Signal time-frequency representation information is obtained through embedded time-frequency transformation layer. Adaptive weight-based fusion is implemented through intrinsic characteristics of the convolutional neural network to handle the multi-domain multi-channel information. The experimental results show that the proposed method improves the accuracy of fault diagnosis of high-speed train bogies with good noise robustness and adaptability to work condition.

Key words: high speed train bogie, fault diagnosis, multi-domain fusion, convolutional neural network

中图分类号: