系统仿真学报 ›› 2025, Vol. 37 ›› Issue (12): 3018-3032.doi: 10.16182/j.issn1004731x.joss.25-0471

• 专栏:复杂系统智能鲁棒调度优化 • 上一篇    

基于多策略融合的光伏系统故障诊断方法

李斌, 王于绰   

  1. 辽宁工程技术大学 电气与控制工程学院,辽宁 葫芦岛 125105
  • 收稿日期:2025-05-26 修回日期:2025-08-15 出版日期:2025-12-26 发布日期:2025-12-24
  • 通讯作者: 王于绰
  • 第一作者简介:李斌(1979-),男,副教授,博士,研究方向为电接触理论及应用、智能电器与智能电网技术。
  • 基金资助:
    国家自然科学基金(51674136);辽宁省教育厅基本科研项目(LJ232410147055)

Fault Diagnosis Method for Photovoltaic Systems Based on Multi-strategy Fusion

Li Bin, Wang Yuchuo   

  1. Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao 125105, China
  • Received:2025-05-26 Revised:2025-08-15 Online:2025-12-26 Published:2025-12-24
  • Contact: Wang Yuchuo

摘要:

为解决光伏系统故障频发的问题,提出一种基于改进旅鼠算法优化多模态融合故障诊断模型。通过马尔可夫转换场将光伏电流、电压一维时序信号转换为二维图像,利用多尺度卷积神经网络挖掘原始波形的空间特征;采用BiGRU提取原始波形的时序动态特征,通过特征融合层实现时空特征的互补增强。引入改进旅鼠算法对BiGRU隐藏层神经元数量、模型的学习率等参数进行自适应优化,结合注意力机制强化故障敏感特征的权重分配。仿真实验结果表明:所提模型仿真与实测数据的诊断准确率分别达到97.9%和95.4%,相较对比模型,诊断准确率提升最高4.1%,为光伏系统智能化运维提供了新的技术路径。

关键词: 马尔可夫场, 双向门控循环单元, 改进旅鼠算法, 故障诊断, MPPT(maximum power point tracking)故障, 逆变器故障

Abstract:

To address the problem of frequent PV system faults, a multimodal fusion fault diagnosis model based on the optimization of the improved lemming algorithm was proposed. The one-dimensional time series signals of PV currents and voltages were converted into two-dimensional images by Markov transformation field, and the spatial features of the original waveforms were mined by using multiscale CNN (MCCNN); BiGRU was used to extract the temporal dynamic features of the original waveforms, and complementary enhancement of the temporal and spatial features was realized by the feature fusion layer. The improved lemming algorithm was innovatively introduced to adaptively optimize parameters such as the number of neurons in the hidden layer of BiGRU and the learning rate of the model, and the weight assignment of fault-sensitive features was enhanced by combining the assistive technology. The results of simulation experiments have shown that the diagnostic accuracies of the proposed model simulation and the measured data reach 97.9% and 95.4%, respectively.Compared with the comparative models, the diagnostic accuracy is improved by up to 4.1%. The proposed model provides a new technical path for intelligent operation and maintenance of PV systems.

Key words: Markov transition field, BiGRU, improved lemming algorithm, fault diagnosis, maximum power point tracking (MPPT) fault, inverter fault

中图分类号: