系统仿真学报 ›› 2025, Vol. 37 ›› Issue (3): 775-790.doi: 10.16182/j.issn1004731x.joss.23-1402

• 论文 • 上一篇    

基于数字孪生的变压器故障诊断方法研究

江伦1, 王大江2, 孙文磊1, 包胜辉1, 刘涵1, 常赛科1   

  1. 1.新疆大学 智能制造现代产业学院,新疆 乌鲁木齐 830046
    2.特变电工有限公司,天津 300000
  • 收稿日期:2023-11-17 修回日期:2023-12-20 出版日期:2025-03-17 发布日期:2025-03-21
  • 通讯作者: 孙文磊
  • 第一作者简介:江伦(1997-),男,硕士生,研究方向为变压器故障诊断。
  • 基金资助:
    工业互联网标识解析全要素集成平台项目(TC210A02E)

Research on Transformer Fault Diagnosis Method Based on Digital Twin

Jiang Lun1, Wang Dajiang2, Sun Wenlei1, Bao Shenghui1, Liu Han1, Chang Saike1   

  1. 1.School of Intelligent Manufacturing Modern Industry, Xinjiang University, Urumqi 830046, China
    2.TBEA Co. , Ltd. , Tianjin 300000, China
  • Received:2023-11-17 Revised:2023-12-20 Online:2025-03-17 Published:2025-03-21
  • Contact: Sun Wenlei

摘要:

针对已有的变压器故障诊断智能算法并不能快速高效的识别变压器故障,导致故障误检及不能被及时检测的问题,提出了一种利用改进麻雀优化算法优化XGBoost的双层故障诊断模型结合数字孪生技术的变压器故障诊断方法。采用先进传感器采集变压器的油气数据和温度数据,利用5G模块将实时数据传到数字孪生系统,设置设备告警阈值实时监控温度数据;使用改进麻雀优化算法优化XGBoost的双层故障诊断模型对油气数据进行实时故障识别处理,结合数字孪生技术对故障进行识别与预警。实验结果表明:该方法提高了故障识别与预警的效率和稳定性,且相较于现有的变压器故障诊断方法具有显著优势。

关键词: 变压器, 数字孪生, 故障诊断, 实时监控, 预警

Abstract:

Aiming at the inability of existing intelligent algorithms for transformer fault diagnosis to quickly and efficiently identify transformer faults, resulting in fault misdetection and untimely detection, this paper proposes a transformer fault diagnosis method using the improved sparrow optimization algorithm to optimize the two-layer fault diagnostic model of XGBoost combined with the digital twin technology. The method adopts advanced sensors to collect oil and gas data and temperature data of the transformer, uses 5G module to transmit the real-time data to the digital twin system. The system monitors the temperature data in real-time by setting the equipment alarm threshold; optimizes the two-layer fault diagnostic model of XGBoost using the improved sparrow optimization algorithm to process real-time fault identification of the oil and gas data, and finally identifies and warns of faults by combining with the digital twin technology. Experimental results indicate that this method significantly enhances the efficiency and stability of fault identification and early warning, demonstrating substantial advantages compared to existing transformer fault diagnosis methods.

Key words: transformer, digital twins, fault diagnosis, real time monitoring, warn

中图分类号: