Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (10): 2511-2521.doi: 10.16182/j.issn1004731x.joss.25-0529
• Simulation Technology for New Power System and Integrated Energy System • Previous Articles
Xu Zhongkai1, Chu Chenyang1, Xie Kai1, Zhao Ruizhuo2, Ke Wenjun3
Received:
2025-06-09
Revised:
2025-09-11
Online:
2025-10-20
Published:
2025-10-21
CLC Number:
Xu Zhongkai, Chu Chenyang, Xie Kai, Zhao Ruizhuo, Ke Wenjun. Optimization Dispatch Method for High-proportion Renewable Energy Power Systems Based on SC-PPO[J]. Journal of System Simulation, 2025, 37(10): 2511-2521.
[1] | International Renewable Energy Agency. Renewable Capacity Statistics 2025[EB/OL]. [2025-04-15]. . |
[2] | 林超凡, 别朝红. 新型电力系统不确定性静态建模及量化分析方法评述[J]. 电力系统自动化, 2024, 48(19): 14-27. |
Lin Chaofan, Bie Zhaohong. Review of Static Modeling and Quantitative Analysis Methods for Uncertainties of New Power Systems[J]. Automation of Electric Power Systems, 2024, 48(19): 14-27. | |
[3] | 江昌旭, 郭辰, 刘晨曦, 等. 基于深度强化学习的主动配电网动态重构综述[J]. 高电压技术, 2025, 51(4): 1801-1816. |
Jiang Changxu, Guo Chen, Liu Chenxi, et al. Review of Active Distribution Network Dynamic Reconfiguration Based on Deep Reinforcement Learning[J]. High Voltage Engineering, 2025, 51(4): 1801-1816. | |
[4] | Saglam Baturay, Furkan Burak Mutlu, Dogan Can Cicek, et al. Parameter-free Reduction of the Estimation Bias in Deep Reinforcement Learning for Deterministic Policy Gradients[J]. Neural Processing Letters, 2024, 56(2): 80. |
[5] | 彭刘阳, 孙元章, 徐箭, 等. 基于深度强化学习的自适应不确定性经济调度[J]. 电力系统自动化, 2020, 44(9): 33-42. |
Peng Liuyang, Sun Yuanzhang, Xu Jian, et al. Self-adaptive Uncertainty Economic Dispatch Based on Deep Reinforcement Learning[J]. Automation of Electric Power Systems, 2020, 44(9): 33-42. | |
[6] | 赵鹏杰, 吴俊勇, 王燚, 等. 基于深度强化学习的微电网优化运行策略[J]. 电力自动化设备, 2022, 42(11): 9-16. |
Zhao Pengjie, Wu Junyong, Wang Yi, et al. Optimal Operation Strategy of Microgrid Based on Deep Reinforcement Learning[J]. Electric Power Automation Equipment, 2022, 42(11): 9-16. | |
[7] | Fujimoto Scott, van Hoof Herke, Meger David. Addressing Function Approximation Error in Actor-critic Methods[EB/OL]. (2018-10-22) [2025-04-18]. . |
[8] | 陈实, 朱亚斌, 刘艺洪, 等. 基于世界模型深度强化学习的含风电电力系统低碳经济调度[J]. 电网技术, 2024, 48(8): 3143-3154. |
Chen Shi, Zhu Yabin, Liu Yihong, et al. Low-carbon Economic Dispatch of Wind-containing Power Systems Based on World Model Deep Reinforcement Learning[J]. Power System Technology, 2024, 48(8): 3143-3154. | |
[9] | 李志军, 徐博, 张家安, 等. 基于TD3可变长度时间窗口最优加权的短期负荷预测策略[J]. 电力建设, 2024, 45(6): 140-148. |
Li Zhijun, Xu Bo, Zhang Jiaan, et al. Short-term Load Optimal Weighted Forecasting Strategy Based on TD3 Variable Length Time Window[J]. Electric Power Construction, 2024, 45(6): 140-148. | |
[10] | 张磊光, 陈海涛, 杨军. 基于SAC算法的含柔性负荷电-气互联系统的频率与气压协调控制策略[J]. 智慧电力, 2024, 52(4): 8-14. |
Zhang Leiguang, Chen Haitao, Yang Jun. Frequency-pressure Coordinated Control Strategy of Electrical-gas Interconnection System Based on SAC Algorithm[J]. Smart Power, 2024, 52(4): 8-14. | |
[11] | 李鑫伟, 陈彬剑, 于明志, 等. 基于多目标优化的多能互补冷热电联产系统运行优化研究[J]. 热力发电, 2024, 53(7): 73-81. |
Li Xinwei, Chen Binjian, Yu Mingzhi, et al. Research on Operation Optimization of Multi-energy Complementary Cogeneration System Based on Multi-objective Optimization[J]. Thermal Power Generation, 2024, 53(7): 73-81. | |
[12] | 曾朝晖, 赵会勇, 罗恩韬, 等. 基于自适应混合优化的电力数据预测方法[J]. 控制与决策, 2023, 38(12): 3490-3498. |
Zeng Zhaohui, Zhao Huiyong, Luo Entao, et al. Power Data Forecasting Method Based on Adaptive Hybrid Optimization[J]. Control and Decision, 2023, 38(12): 3490-3498. | |
[13] | 李练兵, 高国强, 吴伟强, 等. 考虑特征重组与改进Transformer的风电功率短期日前预测方法[J]. 电网技术, 2024, 48(4): 1466-1476. |
Li Lianbing, Gao Guoqiang, Wu Weiqiang, et al. Short-term Day-ahead Wind Power Prediction Considering Feature Recombination and Improved Transformer[J]. Power System Technology, 2024, 48(4): 1466-1476. | |
[14] | 王兴国, 程琪, 于溯. 利用电压变化特征的识别电力系统振荡的方法[J]. 高电压技术, 2024, 50(10): 4655-4661. |
Wang Xingguo, Cheng Qi, Yu Su. Method for Identifying Power System Swing by Using Voltage Variation Characteristics[J]. High Voltage Engineering, 2024, 50(10): 4655-4661. | |
[15] | 蔺伟山, 王小君, 孙庆凯, 等. 不确定性环境下基于深度强化学习的综合能源系统动态调度[J]. 电力系统保护与控制, 2022, 50(18): 50-60. |
Lin Weishan, Wang Xiaojun, Sun Qingkai, et al. Dynamic Dispatch of an Integrated Energy System Based on Deep Reinforcement Learning in an Uncertain Environment[J]. Power System Protection and Control, 2022, 50(18): 50-60. | |
[16] | 杨珺, 吴飞业. 基于双鱼群算法的电力系统无功优化[J]. 控制与决策, 2018, 33(10): 1886-1892. |
Yang Jun, Wu Feiye. Reactive Power Optimization of Power System Based on Double Fish-swarm Algorithm[J]. Control and Decision, 2018, 33(10): 1886-1892. | |
[17] | 吕凯, 毛荀, 乔咏田, 等. 电网调度中基于深度学习的实时优化方法研究[J]. 电工技术, 2024(增2): 402-405. |
Kai Lü, Mao Xun, Qiao Yongtian, et al. Research on Real-time Optimization Method Based on Deep Learning in Power Grid Scheduling[J]. Electric Engineering, 2024(S2): 402-405. | |
[18] | 谭洪, 陈嘉迅, 王秋杰, 等. 计及风电频率支撑能力和运行风险的鲁棒机组组合模型[J]. 电力系统保护与控制, 2025, 53(4): 96-107. |
Tan Hong, Chen Jiaxun, Wang Qiujie, et al. A Robust Unit Commitment Model Considering Wind Power Frequency Support Capability and Operational Risk[J]. Power System Protection and Control, 2025, 53(4): 96-107. | |
[19] | 高琴, 徐光虎, 夏尚学, 等. 基于深度强化学习的电力系统紧急切机稳控策略生成方法[J]. 电力科学与技术学报, 2025, 40(1): 39-46. |
Gao Qin, Xu Guanghu, Xia Shangxue, et al. Policy Generation Method for Power System Stability Control During Emergent Tripping of Unit Based on Deep Reinforcement Learning[J]. Journal of Electric Power Science and Technology, 2025, 40(1): 39-46. | |
[20] | Schulman J, Wolski F, Dhariwal P, et al. Proximal Policy Optimization Algorithms[EB/OL]. (2017-08-28) [2025-03-19]. . |
[21] | Bai Shaojie, Kolter J Z, Koltun V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling[EB/OL]. (2018-04-19) [2025-03-19]. . |
[1] | Jiang Ming, He Tao. Solving the Vehicle Routing Problem Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2025, 37(9): 2177-2187. |
[2] | Chen Zhen, Wu Zhuoyi, Zhang Lin. Research on Policy Representation in Deep Reinforcement Learning [J]. Journal of System Simulation, 2025, 37(7): 1753-1769. |
[3] | Wu Guohua, Zeng Jiaheng, Wang Dezhi, Zheng Long, Zou Wei. A Quadrotor Trajectory Tracking Control Method Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2025, 37(5): 1169-1187. |
[4] | Jiang Jiachen, Jia Zhengxuan, Xu Zhao, Lin Tingyu, Zhao Pengpeng, Ou Yiming. Decision Modeling and Solution Based on Game Adversarial Complex Systems [J]. Journal of System Simulation, 2025, 37(1): 66-78. |
[5] | Qin Baoxin, Zhang Yuxiao, Wu Sirui, Cao Weichong, Li Zhan. Intelligent Optimization of Coal Terminal Unloading Scheduling Based on Improved D3QN Algorithm [J]. Journal of System Simulation, 2024, 36(3): 770-781. |
[6] | Li Ming, Ye Wangzhong, Yan Jiehua. Path Planning of Desert Robot Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2024, 36(12): 2917-2925. |
[7] | Zhang Yongfu, Liu Yang, Yuan He. A Method for Key Node Identification in Operational Target System Based on War Gaming [J]. Journal of System Simulation, 2024, 36(11): 2654-2661. |
[8] | An Jing, Si Guangya, Zhang Lei. Strategy Optimization Method of Multi-dimension Projection Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2024, 36(1): 39-49. |
[9] | Laiyi Yang, Jing Bi, Haitao Yuan. Intelligent Path Planning for Mobile Robots Based on SAC Algorithm [J]. Journal of System Simulation, 2023, 35(8): 1726-1736. |
[10] | Jiayi Liu, Gang Wang, Qiang Fu, Xiangke Guo, Siyuan Wang. Intelligent Air Defense Task Assignment Based on Assignment Strategy Optimization Algorithm [J]. Journal of System Simulation, 2023, 35(8): 1705-1716. |
[11] | Junqiang Lin, Hongjun Wang, Xiangjun Zou, Po Zhang, Chengen Li, Yipeng Zhou, Shujie Yao. Obstacle Avoidance Path Planning and Simulation of Mobile Picking Robot Based on DPPO [J]. Journal of System Simulation, 2023, 35(8): 1692-1704. |
[12] | Fei Ding, Yuchen Sha, Ying Hong, Xiao Kuai, Dengyin Zhang. Joint Optimization Strategy of Computing Offloading and Edge Caching for Intelligent Connected Vehicles [J]. Journal of System Simulation, 2023, 35(6): 1203-1214. |
[13] | Yuxuan Dai, Chenggang Cui. Deep Reinforcement Learning-Based Control Strategy for Boost Converter [J]. Journal of System Simulation, 2023, 35(5): 1109-1119. |
[14] | Haotian Xu, Long Qin, Junjie Zeng, Yue Hu, Qi Zhang. Research Progress of Opponent Modeling Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2023, 35(4): 671-694. |
[15] | Jiajie Shi, Peng Yang, Yannan Pi. Machine Learning-based Simulation Research of On-line Subway Pedestrian Flow Control [J]. Journal of System Simulation, 2023, 35(2): 386-395. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||