Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (7): 1583-1606.doi: 10.16182/j.issn1004731x.joss.25-0554
• Invited Reviews •
Wang Zili1,2, Gao Yuntian1,2, Yang Dezhen1,2, Liu Yeyang1,2, Ren Yi1,2
Received:
2025-06-13
Revised:
2025-06-30
Online:
2025-07-18
Published:
2025-07-30
Contact:
Yang Dezhen
CLC Number:
Wang Zili, Gao Yuntian, Yang Dezhen, Liu Yeyang, Ren Yi. Reliability Simulation Testing and Verification Technologies for Intelligent Systems: Frontiers, Progress, and Challenges[J]. Journal of System Simulation, 2025, 37(7): 1583-1606.
Table 2
Common evaluation indicators for intelligent systems
指标 | 内涵 | 主要应用领域 | 侧重点 |
---|---|---|---|
准确率 | 正确预测与总预测次数的比率 | 金融领域的信用评分模型;医疗领域的疾病判断模型 | 评价模型预测能力[ |
精确率 | 正确阳性预测与预测阳性的比例 | 医疗领域的疾病判断模型 | 在分类任务中评估模型的阳性预测性能 |
召回率 | 正确阳性预测与实际阳性的比例 | 医疗领域的疾病判断模型 | 识别出所有阳性样本的能力 |
F1值 | 精确度与召回率的调和平均值 | 金融领域,信用评分和欺诈检测模型;舆情领域,文本分析模型的分类效果 | 综合考虑误报与漏报,提供对模型分类性能的整体评估维度[ |
鲁棒性 | 评估在复杂且动态环境下是否维持稳定性能 | 在自动驾驶领域,需确保在复杂路况和不同天气下仍能稳定运行,避免安全风险 | 面对输入数据分布变化、噪声干扰或其他外部环境因素时,能够持续输出一致且准确的预测结果[ |
Table 3
Comparison of core functions of RST&V platform
平台 | 多模态数据融合 | 动态场景建模 | 故障注入与传播分析 | 实时性与可扩展性 | 开放性与可定制化 |
---|---|---|---|---|---|
Apollo | 高精度地图与传感器融合(毫米级精度),依赖真实硬件标定 | 基于规则生成交通流,极端场景依赖人工设计 | 支持传感器信号丢失、算法逻辑错误注入,对抗攻击漏洞覆盖不足 | 支持分布式部署,高精度仿真依赖本地GPU算力 | 开源代码,可自定义模块,架构复杂、调试门槛高 |
CARLA(Uber) | 物理级传感器模型(LiDAR/摄像头),数据保真度受虚幻引擎限制 | 动态生成天气、光照、交通流,长尾场景需脚本扩展 | 通过Python API注入传感器噪声、通信延迟,缺乏系统级故障传播量化 | 分布式并行仿真(多任务同步),大规模场景渲染延迟显著 | 开源虚幻引擎插件,Python API调用灵活 |
Autoware(开源社区) | 模块化传感器接口(ROS/ROS2),需第三方工具提升融合精度 | 依赖外部场景工具(如CARLA),具备多智能体交互建模能力 | 结合AVP工具包实现局部故障诊断,无系统性故障链分析 | 单机运行扩展性受限,模块化架构支持功能扩展 | ROS节点化设计,生态丰富,硬件性能要求高 |
Udacity Simulator | 基础传感器模拟(低保真),无异构数据同步机制 | 预设简单场景(无动态交互),无极端条件支持 | 不支持主动故障注入 | 单线程运行,实时性差,仅支持小规模测试 | 封闭式 API,图形界面操作,无底层修改权限 |
TAD Sim | 数字孪生与AI交通流仿真,可进行物理级传感器噪声注入 | 自动生成 “鬼探头”“团雾”等极端场景,有拟人化背景车模型 | 全链路故障注入(传感器-计算-执行),可量化故障传播概率(如海况影响) | 云端高并发(千级并行),支持硬件在环(HIL)实时测试 | 核心功能私有(如云端调度),部分模块支持API接入 |
[1] | National Highway Traffic Safety Administration. Summary report: standing general order on crash reporting for level 2 advanced driver assistance systems[R]. US Department of Transport: Washington, DC, USA, 2022. |
[2] | DMV. Autonomous Vehicle Collision Reports[EB/OL]. (2025-06-06) [2025-06-13]. . |
[3] | 中国新闻网. 五问小米SU7"爆燃事故"[EB/OL]. (2025-04-01) [2025-06-13]. . |
[4] | 新浪网. 联合国报告: 一军用无人机自主攻击人类 或为史上首次[EB/OL]. (2021-06-01) [2025-06-13]. . |
[5] | TIME. 'A Tragic Mistake.' Botched Drone Strike in Afghanistan Raises Concerns Over Biden's Counterterrorism Strategy[EB/OL]. (2021-09-17) [2025-06-13]. . |
[6] | 美国之音. 美军超级大黄蜂战机在红海上空遭"友军误击"2飞行员获救[EB/OL]. (2024-12-22) [2025-06-13]. . |
[7] | Gitnux. Drone Accident Statistics[EB/OL]. [2025-06-13]. . |
[8] | Commission European. Guidelines on the Definition of an Artificial Intelligence System Established by AI Act[EB/OL]. (2025-03-07) [2025-06-13]. . |
[9] | Korteling J E H, van de Boer-Visschedijk G C, Blankendaal R A M, et al. Human- Versus Artificial Intelligence[J]. Frontiers in Artificial Intelligence, 2021, 4: 622364. |
[10] | Jungherr Andreas. Artificial Intelligence and Democracy: A Conceptual Framework[J]. Social Media + Society, 2023, 2023(7): 20563051231186353. |
[11] | 国家市场监督管理总局, 国家标准化管理委员会. 汽车驾驶自动化分级: [S]. 北京: 中国标准出版社, 2021: 3-7. |
State Administration for Market Regulation, National Standardization Administration. Road Vehicles-diagnostic Communication Over Controller Area Network (DoCAN)-dictionary: [S]. Beijing: Standards Press of China, 2021: 3-7. | |
[12] | 中国民用航空局. 民用无人驾驶航空器系统分布式操作运行等级划分: [S]. 北京: 中国民航出版社, 2022: 2-4. |
Civil Aviation Administration of China. Grading of Distributed Operation Level for Civil Unmanned Aircraft System: [S]. Beijing: Civil Aviation of China Publishing House, 2022: 2-4. | |
[13] | International SAE. Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles: J3016_202104 [S]. Warrendale: SAE International, 2021: 17-26. |
[14] | Afonin V L, Gavrilina L V, Yakovlev M G. An Expert System for an Intelligent Technological Complex for Complicated Surface Processing[J]. Journal of Machinery Manufacture and Reliability, 2022, 51(S1): S109-S119. |
[15] | Aksjonov Andrei, Kyrki Ville. A Safety-critical Decision Making and Control Framework Combining Machine Learning and Rule-based Algorithms[EB/OL]. (2022-01-30) [2025-06-12]. . |
[16] | Liu Zhijian, Amini A, Zhu Sibo, et al. Efficient and Robust LiDAR-based End-to-end Navigation[C]//2021 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2021: 13247-13254. |
[17] | Khan Murad, Seo Junho, Kim Dongkyun. Modeling of Intelligent Sensor Duty Cycling for Smart Home Automation[J]. IEEE Transactions on Automation Science and Engineering, 2022, 19(3): 2412-2421. |
[18] | He Wen, Chen Yong, Liu Tao, et al. Gaussian Pseudo-spectrum Optimization-based Fuzzy Logic Parallel Parking Trajectory Planning[J]. International Journal of Automotive Technology, 2025, 26(1): 115-128. |
[19] | Liang Chen, Chen Zhenwu, Yang Liang, et al. Physical Architecture Simulation Based on System Dynamics Modelling for an Autonomous Transportation System Scenario[J]. Journal of Advanced Transportation, 2023, 2023(1): 9390468. |
[20] | Su Yuanbo, Xing Lü, Li Shukai, et al. Self-adaptive Equation Embedded Neural Networks for Traffic Flow State Estimation with Sparse Data[J]. Physics of Fluids, 2024, 36(10): 104127. |
[21] | Zhao Lu, Farhi Nadir, Christoforou Zoi, et al. Analysis of Driver Behavior and Intervehicular Collision: A Data-based Traffic Modeling and Simulation Approach[J]. Journal of Advanced Transportation, 2022, 2022(1): 1068311. |
[22] | Jiang Yi. Intelligent Building Construction Management Based on BIM Digital Twin[J]. Computational Intelligence and Neuroscience, 2021, 2021(1): 4979249. |
[23] | Zhang Hong, Zheng Zan, Yu Hailiang, et al. Analysis of Intelligent and Connected Vehicles Driving System Modeling[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2025, 239(5): 1807-1819. |
[24] | Jia Lulu, Yang Dezhen, Ren Yi, et al. A Dynamic Test Scenario Generation Method for Autonomous Vehicles Based on Conditional Generative Adversarial Imitation Learning[J]. Accident Analysis & Prevention, 2024, 194: 107279. |
[25] | Wang Yunbo, Long Mingsheng, Wang Jianmin, et al. PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 879-888. |
[26] | Chen Jialiang, Li Huizhe, Hu Zhaozheng, et al. Evaluation Index for IVIS Integration Test Under a Closed Condition Based on the Analytic Hierarchy Process[J]. Electronics, 2022, 11(22): 3830. |
[27] | Wang Yiyun, Yu Rongjie, Qiu Shuhan, et al. Safety Performance Boundary Identification of Highly Automated Vehicles: A Surrogate Model-based Gradient Descent Searching Approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 23809-23820. |
[28] | Zhou Rui, Liu Yuping, Zhang Kai, et al. Genetic Algorithm-based Challenging Scenarios Generation for Autonomous Vehicle Testing[J]. IEEE Journal of Radio Frequency Identification, 2022, 6: 928-933. |
[29] | Wang Pengyu, Wang Guangyu, Li Wenbo, et al. Research on Traffic Flow Generation Model Based on Improved ACGAN and Its Evaluation System[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. (2025-03-01) [2025-06-11]. . |
[30] | Yang Dezhen, Liu Yeyang, Ren Yi, et al. A High-dimensional Dynamic Characteristics-based Boundary Test Scenario Generation Method for UAVs in Dynamic Target Tracking[J]. IEEE Systems Journal, 2025, 19(2): 553-564. |
[31] | Zheng Chengwei, Lin Wenbin, Xu Feng. EditableNeRF: Editing Topologically Varying Neural Radiance Fields by Key Points[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2023: 8317-8327. |
[32] | Wang Han, Liu Min, Shen Weiming. Industrial-generative Pre-trained Transformer for Intelligent Manufacturing Systems[J]. IET Collaborative Intelligent Manufacturing, 2023, 5(2): e12078. |
[33] | Yang Lan, Yuan Jiaqi, Zhao Xiangmo, et al. SceGAN: A Method for Generating Autonomous Vehicle Cut-in Scenarios on Highways Based on Deep Learning[J]. Journal of Intelligent and Connected Vehicles, 2023, 6(4): 264-274. |
[34] | Wang Xumeng, Xue Xiao, Yan Ran, et al. Sora for Intelligent Vehicles: A Step from Constraint-based Simulation to Artificiofactual Experiments Through Dynamic Visualization[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(3): 4249-4253. |
[35] | 王若萱, 吴建平, 徐辉. 自动驾驶汽车感知系统仿真的研究及应用综述[J]. 系统仿真学报, 2022, 34(12): 2507-2521. |
Wang Ruoxuan, Wu Jianping, Xu Hui. Overview of Research and Application on Autonomous Vehicle Oriented Perception System Simulation[J]. Journal of System Simulation, 2022, 34(12): 2507-2521. | |
[36] | Li Xin, Deng Weiwen, Zhang Sumin, et al. Research on Millimeter Wave Radar Simulation Model for Intelligent Vehicle[J]. International Journal of Automotive Technology, 2020, 21(2): 275-284. |
[37] | Farag Wael. Real-time NMPC Path Tracker for Autonomous Vehicles[J]. Asian Journal of Control, 2021, 23(4): 1952-1965. |
[38] | Gregory J, Rokonuzzaman M, Mohajer N, et al. Data-driven Vehicle Dynamic Model for Autonomous Vehicle Applications[C]//2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Piscataway: IEEE, 2023: 2850-2855. |
[39] | Mauro Da Lio, Bortoluzzi Daniele, Gastone Pietro Rosati Papini. Modelling Longitudinal Vehicle Dynamics with Neural Networks[J]. Vehicle System Dynamics, 2020, 58(11): 1675-1693. |
[40] | Pan Yongjun, Nie Xiaobo, Li Zhixiong, et al. Data-driven Vehicle Modeling of Longitudinal Dynamics Based on a Multibody Model and Deep Neural Networks[J]. Measurement, 2021, 180: 109541. |
[41] | Zhou Zhisong, Wang Yafei, Zhou Guofeng, et al. Vehicle Lateral Dynamics-inspired Hybrid Model Using Neural Network for Parameter Identification and Error Characterization[J]. IEEE Transactions on Vehicular Technology, 2024, 73(11): 16173-16186. |
[42] | Gao Jiyang, Sun Chen, Zhao Hang, et al. VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2020: 11522-11530. |
[43] | dSPACE. ADASIS[EB/OL]. [2025-06-09]. ,future%20standards%20for%20access%20to%20predictive%20road%20data. |
[44] | Dai Yuqi, Sun Jian, Li Shengbo, et al. Hierarchical and Decoupled BEV Perception Learning Framework for Autonomous Driving[EB/OL]. (2024-07-25) [2025-06-10]. . |
[45] | Fu Haoyu, Zhang Diankun, Zhao Zongchuang, et al. Orion: A Holistic End-to-end Autonomous Driving Framework by Vision-language Instructed Action Generation[EB/OL]. (2025-03-25) [2025-06-10]. . |
[46] | Jia Xiaosong, You Junqi, Zhang Zhiyuan, et al. DriveTransformer: Unified Transformer for Scalable End-to-end Autonomous Driving[EB/OL]. (2025-03-07) [2025-06-11]. . |
[47] | Gao Hao, Chen Shaoyu, Jiang Bo, et al. RAD: Training an End-to-end Driving Policy via Large-scale 3DGS-based Reinforcement Learning[EB/OL]. (2025-02-18) [2025-06-11]. . |
[48] | Zhang Yang, Yang Shixin, Bai Chenjia, et al. Towards Efficient LLM Grounding for Embodied Multi-agent Collaboration[EB/OL]. (2024-05-26) [2025-06-12]. . |
[49] | 贾露露. 融合认知和行为的无人车自主系统可靠性仿真评估方法[D]. 北京: 北京航空航天大学, 2025. |
Jia Lulu. A Reliability Simulation Evaluation Method of Autonomous Vehicles Integrating Cognition and Behavior[D]. Beijing: Beihang University, 2025. | |
[50] | Jha S, Tsai T, Hari S, et al. Kayotee: A Fault Injection-based System to Assess the Safety and Reliability of Autonomous Vehicles to Faults and Errors[EB/OL]. (2019-07-01) [2025-06-12]. . |
[51] | Jha S, Banerjee S, Tsai T, et al. ML-based Fault Injection for Autonomous Vehicles: A Case for Bayesian Fault Injection[C]//2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). Piscataway: IEEE, 2019: 112-124. |
[52] | Zhou Yu, Chen He, Ren Hongping, et al. Event-driven Fault Injection Testing Framework[C]//2024 4th International Conference on Intelligent Technology and Embedded Systems (ICITES). Piscataway: IEEE, 2024: 40-46. |
[53] | Liu Ting, Fu Yuzhuo, Xu Xiaotong, et al. A Cross-layer Fault Propagation Analysis Method for Edge Intelligence Systems Deployed with DNNs[J]. Journal of Systems Architecture, 2021, 116: 102057. |
[54] | Saeed Awadh Bin-Nashwan, Li Zhanbiao, Jiang Haichang, et al. Does AI Adoption Redefine Financial Reporting Accuracy, Auditing Efficiency, and Information Asymmetry? An Integrated Model of TOE-TAM-RDT and Big Data Governance[J]. Computers in Human Behavior Reports, 2025, 17: 100572. |
[55] | Gao Maosheng, Yu Juan, Kamel S, et al. An Intelligent Operational Reliability Assessment Approach Considering Sample Imbalance[C]//2023 IEEE 7th Conference on Energy Internet and Energy System Integration (EI2). Piscataway: IEEE, 2023: 4729-4734. |
[56] | Ribeiro M T, Singh S, Guestrin C. "Why Should I Trust You?": Explaining the Predictions of Any Classifier[C]//Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. New York: ACM, 2016: 1135-1144. |
[57] | Pradeep Aneesh, Bakoev Mironshokh, Akhroljonova Nazokat. A Reliability Analysis of Self-driving Vehicles: Evaluating the Safety and Performance of Autonomous Driving Systems[C]//2023 15th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). Piscataway: IEEE, 2023: 1-5. |
[58] | Friston K. The Free-energy Principle: A Unified Brain Theory?[J]. Nature Reviews Neuroscience, 2010, 11(2): 127-138. |
[59] | Bahl E, Chatterjee S, Mukherjee U, et al. Using Deep Learning to Quantify Neuronal Activation from Single-cell and Spatial Transcriptomic Data[J]. Nature Communications, 2024, 15(1): 779. |
[60] | Wan Wenfei, Meng Ya, Shang Bin, et al. Reliability Assessment Scheme for Intelligent Autonomous System[C]//2022 13th International Conference on Reliability, Maintainability, and Safety (ICRMS). Piscataway: IEEE, 2022: 285-289. |
[61] | Yue Kun. Multi-sensor Data Fusion for Autonomous Flight of Unmanned Aerial Vehicles in Complex Flight Environments[J]. Drone Systems and Applications, 2024, 12: 1-12. |
[62] | Yang Jiachen, Liu Shan, Su Hansong, et al. Driving Assistance System Based on Data Fusion of Multisource Sensors for Autonomous Unmanned Ground Vehicles[J]. Computer Networks, 2021, 192: 108053. |
[63] | Toroghi A, Guo W, Abdollah Pour M M, et al. Right for Right Reasons: Large Language Models for Verifiable Commonsense Knowledge Graph Question Answering[C]//Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing. Miami: Association for Computational Linguistics, 2024: 6601-6633. |
[64] | Latapie H. Towards A Litmus Test for Common Sense[EB/OL]. (2025-01-17) [2025-06-13]. . |
[65] | Dong Liu. Research on Intelligent Level Evaluation System of Intelligent System[C]//2009 Fifth International Conference on Natural Computation. Piscataway: IEEE, 2009: 274-278. |
[66] | Min Jie, Hong Yili, King C B. Reliability Analysis of Artificial Intelligence Systems Using Recurrent Events Data from Autonomous Vehicles[J]. Journal of the Royal Statistical Society Series C: Applied Statistics, 2022, 71(4): 987-1013. |
[67] | Wang Lizhi, Zhao Xuejiao, Zhang Yuan, et al. Unmanned Aerial Vehicle Swarm Mission Reliability Modeling and Evaluation Method Oriented to Systematic and Networked Mission[J]. Chinese Journal of Aeronautics, 2021, 34(2): 466-478. |
[68] | Xing Liudong, Johnson B W. Reliability Theory and Practice for Unmanned Aerial Vehicles[J]. IEEE Internet of Things Journal, 2023, 10(4): 3548-3566. |
[69] | Hendrycks D, Mazeika M, Dietterich T. Deep Anomaly Detection with Outlier Exposure[EB/OL]. (2019-01-28) [2025-06-12]. . |
[70] | Huang Xinyu, Wang Peng, Cheng Xinjin, et al. The Apolloscape Dataset for Autonomous Driving[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2018: 954-960. |
[71] | Luo Xiaolong, Wei Zhiyuan, Zhang Guoqing, et al. High-risk Powered Two-wheelers Scenarios Generation for Autonomous Vehicle Testing Using WGAN[J]. Traffic Injury Prevention, 2025, 26(2): 243-251. |
[72] | Tian Haoxiang, Wu Guoquan, Yan Jiren, et al. Generating Critical Test Scenarios for Autonomous Driving Systems via Influential Behavior Patterns[C]//Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering. 2022: 1-12. |
[73] | Dosovitskiy A, Ros G, Codevilla F, et al. CARLA: An Open Urban Driving Simulator[C]//Proceedings of the 1st Annual Conference on Robot Learning. Chia Laguna Resort: PMLR, 2017: 1-16. |
[74] | Pawelczyk M, Bielawski S, Johannes van den Heuvel, et al. CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms[EB/OL]. (2021-08-02) [2025-06-13]. . |
[75] | Hossain J. Autonomous Driving with Deep Reinforcement Learning in CARLA Simulation[EB/OL]. (2023-06-20) [2025-06-13]. . |
[76] | 丁善婷, 王淼, 董正琼, 等. 基于多智能体的舰船装备健康状态仿真评估方法[J]. 中国机械工程, 2022, 33(10): 1169-1177. |
Ding Shanting, Wang Miao, Dong Zhengqiong, et al. A Multi-agent-based Simulation Method for Health State Assessments of Naval Equipment[J]. China Mechanical Engineering, 2022, 33(10): 1169-1177. | |
[77] | Sinha V, Barman A. Neural Network Modelling, Testing, and Simulation Study of an Autonomous Vehicle Using the Udacity Simulator[C]//2023 4th International Conference on Intelligent Technologies (CONIT). IEEE, 2024: 1-11. |
[78] | Niu Yihan, Zhu Feixiang, Wei Moxuan, et al. A Multi-ship Collision Avoidance Algorithm Using Data-driven Multi-agent Deep Reinforcement Learning[J]. Journal of Marine Science and Engineering, 2023, 11(11): 2101. |
[1] | Chen Jianghong, Shi Kanghao, Hu Jiahui, Zhao Xiaohan. Economic Optimal Scheduling of Microgrid Considering Elastic Recovery [J]. Journal of System Simulation, 2025, 37(3): 623-634. |
[2] | Wang Chenguang, Bai Jinpeng, Li Tingting, Miao Lifeng, Wang Kaifeng. Reliability Evaluation Method of Radar Simulation Model Based on Air Combat Mechanism [J]. Journal of System Simulation, 2023, 35(10): 2113-2121. |
[3] | Zheng Yang, Zhimin Xiang, Shiwen Ma. A Method of Loose Coupling Entity Modeling Based on Variable Rules [J]. Journal of System Simulation, 2022, 34(7): 1506-1511. |
[4] | Hongnai Gao, Lijiang Fu, Qian Xia, Ya Guo. Application of Observability in Performance Evaluation of Photosynthesis Model [J]. Journal of System Simulation, 2022, 34(6): 1330-1342. |
[5] | Duan Yuzhou, Chai Tingting, Jian Jie. Travel Time Reliability of Inside Area of Roundabouts [J]. Journal of System Simulation, 2019, 31(3): 438-447. |
[6] | Du Haidong, Cao Junhai, Shen Ying, Teng Shangru. Simulation Assessment of Degradation System Reliability under Imperfect Maintenance [J]. Journal of System Simulation, 2018, 30(8): 2834-2840. |
[7] | Wang Aizhen, Lü Xun. Research on Software Reliability Based on Test Effort and Imperfect Debugging [J]. Journal of System Simulation, 2018, 30(7): 2593-2599. |
[8] | Xia Xintao, Chang Zhen, Li Yunfei. Vibration Performance Prediction and Reliability Analysis for Bearings [J]. Journal of System Simulation, 2018, 30(4): 1390-1399. |
[9] | Sun Xiaozhe, Chen Zongji, Gu Yongliang. Research on Fault-Tolerant Flight Control Computer System Based on Dynamic Reconfiguration [J]. Journal of System Simulation, 2018, 30(10): 3957-3964. |
[10] | Dong Chongjie, Chen Yuqiang. Real-Time Scheduling Algorithm of Dynamic with Fault-Tolerant in Heterogeneous Distributed Systems [J]. Journal of System Simulation, 2017, 29(5): 1132-1140. |
[11] | Li Chengbing, Hao Yucheng, Wang Wenying. Research on City Agglomeration Compound Traffic Reliability [J]. Journal of System Simulation, 2017, 29(3): 565-571. |
[12] | Fang Yongfeng, Chen Jianjun. Repairable k/n Voting System Life Situation Model Analysis and Simulation from Time Response [J]. Journal of System Simulation, 2016, 28(8): 1846-1853. |
[13] | Chi Yulun, Li Haolin. Study Machine Tool Spindle Performance Reliability Based on Bayes Method [J]. Journal of System Simulation, 2016, 28(7): 1667-1672. |
[14] | Liu Xunan, Zhao Lijua, Gai Dongmin, Du Zhangyu, Hao Liangying. Research on Intelligent Hauling Speed Regulation System Based on Shearer's Reliability [J]. Journal of System Simulation, 2016, 28(7): 1601-1608. |
[15] | Du Haidong, Cao Junhai, Wu Wei, Xu Dan. Redundancy Allocation Optimization Design for Complex System Based on Simulation [J]. Journal of System Simulation, 2016, 28(3): 648-653. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||