[1] 赵柏萱, 刘检华, 宁汝新, 等. 一种基于工程规则的管路自动布局与综合优化技术[J]. 机械工程学报, 2015, 51(21): 121-131. Zhao Boxuan,Liu jianhua,Ning Ruxin,et al. An Automatic Pipe Routing and Optimization Technology Based on Engineering Constraints[J]. Journal of mechanical engineering, 2015, 51(21): 121-131. [2] 王运龙, 王晨, 韩洋, 等. 船舶管路智能布局优化设计[J]. 上海交通大学学报, 2015, 49(4): 513-518. Wang Yunlong, Wang Chen, Han Yang, et al.Intellgent Layout Optimization Design of Ship Pipe[J]. Journal of Shanghai jiaotong university, 2015, 49(4): 513-518. [3] 董宗然, 林焰. 基于协同进化和并行计算的船舶管路布置方法[J]. 大连理工大学学报, 2016, 56(4): 367-374. Dong Zong-ran, Lin Yan.Method of ship pipe routing based on co-evolution and parallel computing[J]. Journal of dalian university of technology, 2016, 56(4): 367-374. [4] Jiang W Y, Lin Y, Chen M, et al.A co-evolutionary improved multi-ant colony optimization for ship multiple and branch pipe route design[J]. Ocean Engineering (S0029-8018), 2015, 102: 63-70. [5] 董宗然, 林焰. 船舶布管系统的结构设计及自动化算法[J]. 计算机集成制造系统, 2016, 22(3): 714-727. Dong Zongran, Lin Yan.Structure design and automation algorithm for ship piping system[J]. Computer Integrated Manufacturing Systems, 2016, 22(3): 714-727. [6] 曲艳峰, 蒋丹. 基于动态蚁群算法的三维管路路径规划[J]. 东华大学学报(自然科学版), 2011, 37(4): 387-391. Qu Yanfeng, Jiang Dan.Three-Dimensional Pipe Path Planning Based on Dynamic Ant Colony Algorithm[J]. Journal of donghua university (natural science edition), 2011, 37(4): 387-391. [7] Sui H, Niu W.Branch-pipe-routing approach for ships using improved genetic algorithm[J]. Frontiers of Mechanical Engineering (S2095-0233), 2016, 11(3): 1-8. [8] Goh C K, Tan K C, Liu D S, et al.A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design[J]. European Journal of Operational Research (S0377-2217), 2010, 202(1): 42-54. [9] 朱成立, 谢志远, 柳智鹏. 基于蚁群算法的灌溉管网布置与管径优化设计研究[J]. 江西农业学报, 2015(3): 93-96. Zhu Chengli, Xie Zhiyuan, Liu Zhipeng.Research on Layout of Irrigation Pipe Network and Optimized Design of Pipe Diameter Based on Ant Colony Algorithm[J]. Acta Agriculturae Jiangxi, 2015(3): 93-96. [10] Couceiro M, Ghamisi P.Particle Swarm Optimization[M]. Fractional Order Darwinian Particle Swarm Optimization, 2016: 149-150. [11] 陈家照, 罗寅生. 改进粒子群三维空间路径规划研究[J]. 计算机工程与应用, 2010, 46(33): 39-42. Chen Jiazhao,Luo Yinsheng.Research on improved particle swarm optimization for path planning in 3-D space[J]. COMPUTER ENGINEERING AND APPLICATIONS, 2010, 46(33): 39-42. [12] Thanushkodi K, Deeba K.On performance analysis of hybrid algorithm (improved PSO with simulated annealing) with GA, PSO for multiprocessor job scheduling[J]. Wseas Transactions on Computers (S1109-2750), 2011, 10(9): 287-300. [13] 杜松, 周健勇. 一种差分进化和模拟退火粒子群混合算法[J]. 计算机仿真, 2015, 32(12): 218-221. Du Song, Zhou Jianyong.Hybrid Algorithm of Differential Evolution and Simulated Annealing Particle Swarm Optimization[J]. Computer Simulation, 2015, 32(12): 218-221. [14] 傅文渊, 凌朝东. 布朗运动模拟退火算法[J]. 计算机学报, 2014, 37(6): 1301-1308. Fu Wenyuan, Ling Chaodong.Brownian Motion Based Simulated Annealing Algorithm[J]. Chinese Journal of Computers, 2014, 37(6): 1301-1308. [15] 李敬花, 余峰, 樊付见. 基于遗传模拟退火融合算法的船舶分段装配序列优化[J]. 计算机集成制造系统, 2013, 19(1): 39-45. Li Jinghua,Yu Feng, Fan Fujian.Ship block assembly sequence optimization based on genetic simulated annealing algorithm[J]. Computer Integrated Manufacturing Systems, 2013, 19(1): 39-45. [16] Fan X, Xu G, Yang R.The GA to the optimal design for crane girder and research on its optimization performances[C]// Intelligent Control and Automation. IEEE, 2010: 3220-3224. [17] 刘爱军, 杨育, 李斐, 等. 混沌模拟退火粒子群优化算法研究及应用[J]. 浙江大学学报(工学版), 2013, 47(10): 1722-1730. Liu Aijun, Yang Yu, Li Fei, et al.Chaotic simulated annealing particle swarm optimization algorithm research and its application[J]. Journal of Zhejiang University (Engineering Science), 2013, 47(10): 1722-1730. |