Journal of System Simulation ›› 2023, Vol. 35 ›› Issue (11): 2333-2344.doi: 10.16182/j.issn1004731x.joss.22-0690
• Papers • Previous Articles Next Articles
Zhao Weiping1,2(
), Chen Yu2(
), Xiang Song1, Liu Yuanqiang1, Wang Chaoyue1
Received:2022-06-17
Revised:2022-08-16
Online:2023-11-25
Published:2023-11-24
Contact:
Chen Yu
E-mail:3370477370@qq.com;1009857106@qq.com
CLC Number:
Zhao Weiping, Chen Yu, Xiang Song, Liu Yuanqiang, Wang Chaoyue. Image Semantic Segmentation Algorithm Based on Improved DeepLabv3+[J]. Journal of System Simulation, 2023, 35(11): 2333-2344.
| 1 | Wang Lei, Wu Jiaji, Liu Xunyu, et al. Semantic Segmentation of Large-scale Point Clouds Based on Dilated Nearest Neighbors Graph[J]. Complex & Intelligent Systems, 2022, 8(5): 3833-3845. |
| 2 | 田萱, 王亮, 丁琪. 基于深度学习的图像语义分割方法综述[J]. 软件学报, 2019, 30(2): 440-468. |
| Tian Xuan, Wang Liang, Ding Qi. Review of Image Semantic Segmentation Based on Deep Learning[J]. Journal of Software, 2019, 30(2): 440-468. | |
| 3 | Asgari Taghanaki S, Abhishek K, Cohen J P, et al. Deep Semantic Segmentation of Natural and Medical Images: A Review[J]. Artificial Intelligence Review, 2021, 54(1): 137-178. |
| 4 | Yuan Xiaohui, Shi Jianfang, Gu Lichuan. A Review of Deep Learning Methods for Semantic Segmentation of Remote Sensing Imagery[J]. Expert Systems with Applications, 2021, 169: 114417. |
| 5 | 王奕清. 基于计算机视觉的卫星云图反演降水量方法研究[D]. 成都: 电子科技大学, 2021. |
| Wang Yiqing. A Computer Vision Method for Precipitation Inversion With Satellite Cloud Images[D]. Chengdu: University of Electronic Science and Technology of China, 2021. | |
| 6 | Ivanovs M, Ozols K, Dobrajs A, et al. Improving Semantic Segmentation of Urban Scenes for Self-driving Cars with Synthetic Images[J]. Sensors, 2022, 22(6): 2252. |
| 7 | Kontschieder P, Samuel Rota Bulò, Bischof H, et al. Structured Class-labels in Random Forests for Semantic Image Labelling[C]//2011 International Conference on Computer Vision. Piscataway, NJ, USA: IEEE, 2011: 2190-2197. |
| 8 | Martijn van den Heuvel, Mandl R, Hulshoff Pol H. Normalized Cut Group Clustering of Resting-state FMRI Data[J]. PLoS One, 2008, 3(4): e2001. |
| 9 | Cherkassky V, Ma Yunqian. Practical Selection of SVM Parameters and Noise Estimation for SVM Regression[J]. Neural Networks, 2004, 17(1): 113-126. |
| 10 | Hu Yaosi, Chen Zhenzhong, Lin Weiyao. RGB-D Semantic Segmentation: A Review[C]//2018 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). Piscataway, NJ, USA: IEEE, 2018: 1-6. |
| 11 | Kamilaris A, Prenafeta-Boldú Francesc X. Deep Learning in Agriculture: A Survey[J]. Computers and Electronics in Agriculture, 2018, 147: 70-90. |
| 12 | 刘瑞军, 王向上, 张晨, 等. 基于深度学习的视觉SLAM综述[J]. 系统仿真学报, 2020, 32(7): 1244-1256. |
| Liu Ruijun, Wang Xiangshang, Zhang Chen, et al. A Survey on Visual SLAM Based on Deep Learning[J]. Journal of System Simulation, 2020, 32(7): 1244-1256. | |
| 13 | 罗荣, 王亮, 肖玉杰. 深度学习技术应用现状分析与发展趋势研究[J]. 计算机教育, 2019(10): 19-22. |
| 14 | Yu Changqian, Wang Jingbo, Peng Chao, et al. BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation[C]//Computer Vision – ECCV 2018. Cham: Springer International Publishing, 2018: 334-349. |
| 15 | Zhang Fan, Chen Yanqin, Li Zhihang, et al. ACFNet: Attentional Class Feature Network for Semantic Segmentation[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, NJ, USA: IEEE, 2019: 6797-6806. |
| 16 | Wu Tianyi, Tang Sheng, Zhang Rui, et al. CGNet: A Light-weight Context Guided Network for Semantic Segmentation[J]. IEEE Transactions on Image Processing, 2021, 30: 1169-1179. |
| 17 | Zhao Yaochi, Liu Shiguang, Hu Zhuhua. Focal Learning on Stranger for Imbalanced Image Segmentation[J]. IET Image Processing, 2022, 16(5): 1305-1323. |
| 18 | Zhao Yaochi, Liu Shiguang, Hu Zhuhua. Dynamically Balancing Class Losses in Imbalanced Deep Learning[J]. Electronics Letters, 2022, 58(5): 203-206. |
| 19 | Long J, Shelhamer E, Darrell T. Fully Convolutional Networks for Semantic Segmentation[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2015: 3431-3440. |
| 20 | Guo Yanming, Liu Yu, Georgiou T, et al. A Review of Semantic Segmentation Using Deep Neural Networks[J]. International Journal of Multimedia Information Retrieval, 2018, 7(2): 87-93. |
| 21 | Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-decoder Architecture for Image Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. |
| 22 | Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Cham: Springer International Publishing, 2015: 234-241. |
| 23 | Schönfeld Edgar, Schiele B, Khoreva A. A U-net Based Discriminator for Generative Adversarial Networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2020: 8204-8213. |
| 24 | Jaeger P F, Kohl S A A, Bickelhaupt S, et al. Retina U-net: Embarrassingly Simple Exploitation of Segmentation Supervision for Medical Object Detection[C]//Proceedings of the Machine Learning for Health NeurIPS Workshop. Chia Laguna Resort, Sardinia, Italy: PMLR, 2020: 171-183. |
| 25 | Chen L C, Papandreou G, Kokkinos I, et al. Semantic Image Segmentation With Deep Convolutional Nets and Fully Connected CRFs[EB/OL]. (2016-06-07) [2022-05-30]. . |
| 26 | Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-scale Image Recognition[EB/OL]. (2015-04-10) [2022-05-30]. . |
| 27 | Chen L C, Papandreou G, Kokkinos I, et al. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. |
| 28 | Chen L C, Papandreou G, Schroff F, et al. Rethinking Atrous Convolution for Semantic Image Segmentation[EB/OL]. (2017-12-05) [2022-05-30]. . |
| 29 | Chen L C, Zhu Yukun, Papandreou G, et al. Encoder-decoder With Atrous Separable Convolution for Semantic Image Segmentation[C]//Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 833-851. |
| 30 | Tan Mingxing, Le Q. EfficientNetV2: Smaller Models and Faster Training[C]//Proceedings of the 38th International Conference on Machine Learning. Chia Laguna Resort, Sardinia, Italy: PMLR, 2021: 10096-10106. |
| 31 | Tan Mingxing, Le Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks[C]//Proceedings of the 36th International Conference on Machine Learning. Chia Laguna Resort, Sardinia, Italy: PMLR, 2019: 6105-6114. |
| 32 | Hou Qibin, Zhang Li, Cheng Mingming, et al. Strip Pooling: Rethinking Spatial Pooling for Scene Parsing[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2020: 4002-4011. |
| 33 | Liu Yichao, Shao Zongru, Teng Yueyang, et al. NAM: Normalization-based Attention Module[EB/OL]. (2021-11-24) [2022-05-30]. . |
| 34 | Hu Jie, Shen Li, Sun Gang. Squeeze-and-excitation Networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2018: 7132-7141. |
| 35 | Woo S, Park J, Lee J Y, et al. CBAM: Convolutional Block Attention Module[C]//Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 3-19. |
| [1] | Jiang Ming, He Tao. Solving the Vehicle Routing Problem Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2025, 37(9): 2177-2187. |
| [2] | Jiang Yanji, Zhang Yingyang, Dong Hao, Zhang Xiaoguang, Wang Meihui. Lane Detection in Dark Light Based on Instance Association [J]. Journal of System Simulation, 2025, 37(9): 2188-2199. |
| [3] | Lu Bin, Yang Xuan, Yang Zhenyu, Gao Xiaotian. Adaptive Sampling and Ghost Multi-scale Fusion for Lightweight Weld Defect Detection [J]. Journal of System Simulation, 2025, 37(8): 1978-1990. |
| [4] | Liu Zilong, Zhang Lei. Detection of Small Apple Targets Based on Improved YOLOv5 in Natural Environments [J]. Journal of System Simulation, 2025, 37(8): 2124-2138. |
| [5] | Wang Ziyi, Zhang Kai, Qian Dianwei, Liu Yuzhen. A DRL⁃based Approach for Distributed Equipment Nodes Selection [J]. Journal of System Simulation, 2025, 37(6): 1565-1573. |
| [6] | Wu Guohua, Zeng Jiaheng, Wang Dezhi, Zheng Long, Zou Wei. A Quadrotor Trajectory Tracking Control Method Based on Deep Reinforcement Learning [J]. Journal of System Simulation, 2025, 37(5): 1169-1187. |
| [7] | Wang Xiang, Tan Guozhen. Research on Decision-making of Autonomous Driving in Highway Environment Based on Knowledge and Large Language Model [J]. Journal of System Simulation, 2025, 37(5): 1246-1255. |
| [8] | Li Jie, Liu Yang, Li Liang, Su Bengan, Wei Jialong, Zhou Guangda, Shi Yanmin, Zhao Zhen. Remote Sensing Small Object Detection Based on Cross-stage Two-branch Feature Aggregation [J]. Journal of System Simulation, 2025, 37(4): 1025-1040. |
| [9] | Zheng Lanyue, Zhang Yujie. Traffic Signal Detection Based on Improved YOLOv7 [J]. Journal of System Simulation, 2025, 37(4): 993-1007. |
| [10] | Li Xiang, Ren Xiaoyu, Zhou Yongbing, Zhang Jian. Research on Flexible Integrated Scheduling Under Stochastic Processing Times Based on Improved D3QN Algorithm [J]. Journal of System Simulation, 2025, 37(2): 474-486. |
| [11] | Fei Shuaidi, Cai Changlong, Liu Fei, Chen Minghui, Liu Xiaoming. Research on the Target Allocation Method for Air Defense and Anti-missile Defense of Naval Ships [J]. Journal of System Simulation, 2025, 37(2): 508-516. |
| [12] | Zhang Wenkang, Sun Xiaofeng, Zhong Yiping, Yin Yong. Numerical Simulations of Ship Liquid Tank Sloshing Based on Graph Neural Networks [J]. Journal of System Simulation, 2025, 37(12): 3087-3099. |
| [13] | Wu Shuheng, Liu Yongkui, Zhang Lin, Xiao Yingying, Wang Lihui. Lightweight Assembly Workpiece Detection Algorithm Based on Improved YOLOv8 [J]. Journal of System Simulation, 2025, 37(12): 3099-3111. |
| [14] | Tang Jinlin, Wang Yan, Liu Xiang, Wang Tuanjie, Ji Zhicheng. Boolean Network Model Optimization Based on Neural Network and Genetic Programming [J]. Journal of System Simulation, 2025, 37(11): 2812-2825. |
| [15] | Chen Na, Bai Jiajia, Zhou Qiyin, Li Jialin. Image Feature Point Matching Algorithm Based on Attention and Hierarchical Features [J]. Journal of System Simulation, 2025, 37(11): 2839-2852. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||