Journal of System Simulation ›› 2023, Vol. 35 ›› Issue (4): 721-733.doi: 10.16182/j.issn1004731x.joss.21-1283
• Papers • Previous Articles
Na Ma1(), Tingxin Wen1, Xu Jia2, Xiaohui Li2
Received:
2021-12-13
Revised:
2022-02-26
Online:
2023-04-29
Published:
2023-04-12
CLC Number:
Na Ma, Tingxin Wen, Xu Jia, Xiaohui Li. Cross-domain Text Sentiment Classification Based on Auxiliary Classification Networks[J]. Journal of System Simulation, 2023, 35(4): 721-733.
Table 1
Some samples in dataset
域 | 样本数目 | 正样本示例 | 负样本示例 |
---|---|---|---|
B | 4 465 | 这是一本非常棒的书,老少皆宜,它以一种有趣的方式展示了为什么我们需要一种通用的测量形式 | 这本书传达了一个很好的信息,可能会对我产生持久的影响,但情节非常乏味,书的中间部分基因和鳍鱼的关系似乎与书的其余部分不相适应,不推荐 |
D | 3 586 | 如果你没有这张DVD,你需要把它添加到你的收藏中。在我看来,这是有史以来最好的美国动画电影 | 对于那些对这部电影赞不绝口的人来说,你一定是在另一个维度或别的什么地方 |
E | 5 681 | 我非常喜欢它,我把它用在野外狩猎的户外小径相机里,它能拍几张照片,在各种天气的相机里,我还会再买金斯顿 | 我最近刚买了这个,当我安装它时,诺顿在安装光盘上捕获了2个病毒 |
K | 5 945 | 我很喜欢用这个铸造锅,它煮得很好吃,容量很大 | 绝对的劣质产品,不要浪费你的钱,当你磨任何东西的时候,它都不会固定住,这个产品肯定会让你发脾气 |
Table 3
Comparison of recognition results of target domains when using different algorithms
源域→目标域 | SVM | AuxNN | DANN | PBLM | DAS | ACAN | 本文 |
---|---|---|---|---|---|---|---|
平均值 | 73.66 | 79.85 | 80.29 | 80.40 | 81.96 | 82.15 | 84.22 |
75.20 | 80.80 | 81.70 | 82.50 | 82.05 | 82.35 | 82.41 | |
68.85 | 78.00 | 78.55 | 71.40 | 80.00 | 79.75 | 82.57 | |
70.00 | 77.85 | 79.25 | 74.20 | 80.05 | 80.80 | 82.54 | |
77.15 | 81.75 | 82.30 | 84.20 | 82.75 | 83.45 | 85.36 | |
69.50 | 80.65 | 79.70 | 75.00 | 80.15 | 81.75 | 82.82 | |
71.40 | 78.90 | 80.45 | 79.80 | 81.40 | 82.10 | 83.32 | |
72.15 | 76.40 | 77.60 | 77.60 | 81.15 | 81.30 | 81.26 | |
71.65 | 77.55 | 79.70 | 79.60 | 81.55 | 82.80 | 84.88 | |
79.75 | 84.05 | 86.65 | 87.10 | 85.80 | 86.60 | 89.13 | |
73.50 | 78.10 | 76.10 | 82.50 | 82.25 | 83.05 | 84.72 | |
72.00 | 80.05 | 77.35 | 83.20 | 81.50 | 78.60 | 82.89 | |
82.80 | 84.15 | 83.95 | 87.80 | 84.85 | 83.35 | 88.76 |
1 | 赵传君, 王素格, 李德玉. 跨领域文本情感分类研究进展[J]. 软件学报, 2020, 31(6): 1723-1726. |
Zhao Chuanjun, Wang Suge, Li Deyu. Research Progress on Cross-Domain Text Sentiment Classification[J]. Journal of Software, 2020, 31(6): 1723-1746. | |
2 | Robert R. Domain Adaptation Using Domain Similarity and Domain Complexity-based Instance Selection for Cross-Domain Sentiment Analysis[C]//IEEE 12th International Conference on Data Mining Workshops. Piscataway: IEEE, 2012: 717-723. |
3 | Xia R, Zong C Q, Hu X L, et al. Feature Ensemble Plus Sample Selection: Domain Adaptation for Sentiment Classification[J]. IEEE Intelligent Systems(S1541-1672), 2013, 28(3): 10-18. |
4 | Giacomo D, Gianluca M, Andrea P. Cross-Domain Sentiment Classification via Polarity-Driven State Transitions in a Markov Model[C]//International Joint Conference on Knowledge Discovery, Knowledge Engineering, and Knowledge Management. Berlin: Springer, 2015: 118-138. |
5 | John B, Ryan T M, Fernando P. Domain Adaptation with Structural Correspondence Learning[C]//Conference on Empirical Methods in Natural Language Processing. New York: ACM, 2006: 120-128. |
6 | Yftah Z, Roi R. Neural Structural Correspondence Learning for Domain Adaptation[C]//21st Conference on Computational Natural Language Learning. Stroudsburg: ACL, 2017: 400-410. |
7 | Wang L, Niu J W, Song H B, et al. SentiRelated: A Cross-Domain Sentiment Classification Algorithm for Short Texts through Sentiment Related Index[J]. Journal of Network and Computer Applications(S1084-8045), 2018, 101: 111-119. |
8 | Tareq A M, Nazlia O, Mohammed A, et al. Feature Transfer through New Statistical Association Measure for Cross-Domain Sentiment Analysis[J]. Journal of Engineering and Applied Sciences(S1816-949X), 2017, 12(1): 164-170. |
9 | Zhu E D, Huang G Y, Mo B Y, et al. Features Extraction Based on Neural Network for Cross-Domain Sentiment Classification[C]//International Conference on Database Systems for Advanced Applications. Berlin: Springer, 2016: 81-88. |
10 | Ganin Y, Lempitsky V. Unsupervised Domain Adaptation by Backpropagation[C]//32nd International Conference on Machine Learning. Cambridge: MIT Press, 2015: 1180-1189. |
11 | Li Z, Zhang Y, Wu Y X, et al. End-to-End Adversarial Memory Network for Cross-Domain Sentiment Classification[C]//International Joint Conference on Artificial Intelligence. New York: ACM, 2017: 2237-2243. |
12 | Qu X Y, Zou Z K, Cheng Y, et al. Adversarial Category Alignment Network for Cross-Domain Sentiment Classification[C]//2019 Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 2496-2508. |
13 | He R D, Wee S L, Hwee T N, et al. Adaptive Semi-Supervised Learning for Cross-Domain Sentiment Classification[C]//2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 3467-3476. |
14 | Zhao C J, Wang S G, Li D Y. Multi-Source Domain Adaptation with Joint Learning for Cross-Domain Sentiment Classification[J]. Knowledge-Based Systems(S0950-7051), 2020, 191: 105254. |
15 | Li L, Ye W R, Long M S, et al. Simultaneous Learning of Pivots and Representations for Cross-Domain Sentiment Classification[C]//AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 8220-8227. |
16 | Mao K L, Niu J W, Wang X J, et al. Cross-Domain Sentiment Analysis of Product Reviews by Combining Lexicon-Based and Learn-Based Techniques[C]//IEEE 17th International Conference on High Performance Computing and Communications. Piscataway: IEEE, 2015: 351-356. |
17 | Dolores M G, Eugenio M C, Teresa M V, et al. Cross-Domain Sentiment Analysis Using Spanish Opinionated Words[C]//International Conference on Applications of Natural Language to Data Bases/Information Systems. Berlin: Springer, 2014: 214-219. |
18 | Huang X C, Rao Y H, Xie H R, et al. Cross-Domain Sentiment Classification via Topic-Related TrAdaBoost[C]//Thirty-First AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 4939-4940. |
19 | Zhou G Y, Zhou Y, Guo X Y, et al. Cross-Domain Sentiment Classification via Topical Correspondence Transfer[J]. Neurocomputing(S0925-2312), 2015, 159: 298-305. |
20 | Giacomo D, Gianluca M, Andrea P, et al. Markov Chain Based Method for In-Domain and Cross-Domain Sentiment Classification[C]//7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management. Piscataway: IEEE, 2015: 127-137. |
21 | Nelakurthi A R, Tong H h, Maciejewski R, et al. User-Guided Cross-Domain Sentiment Classification[C]//2017 SIAM International Conference on Data Mining. Bethesda: SIAM, 2017: 471-479. |
22 | Pei Z Y, Cao Z J, Long M S, et al. Multi-Adversarial Domain Adaptation[C]//Thirty-second AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 3934-3941. |
23 | John B, Mark D, Fernando P. Biographies, Bollywood, Boom-Boxes and Blenders: Domain Adaptation for Sentiment Classification[C]//The 45th Annual Meeting of the Association of Computational Linguistics. Stroudsburg: ACL, 2007: 440-447. |
24 | Chen M M, Xu Z X, Kilian Q W, et al. Marginalized Denoising Autoencoders for Domain Adaptation[C]//29th International Coference on International Conference on Machine Learning. New York: ACM, 2012: 1627-1634. |
25 | Ganin Y, Ustinova E, Lempitsky V, et al. Domain-Adversarial Training of Neural Networks[J]. Journal of Machine Learning Research(S1532-4435), 2016, 17: 1-35. |
26 | Yu J F, Jiang J. Learning Sentence Embeddings with Auxiliary Tasks for Cross-Domain Sentiment Classification[C]//2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2016: 236-246. |
27 | Yftah Z, Roi R. Pivot Based Language Modeling for Improved Neural Domain Adaptation[C]//2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2018: 1241-1251. |
28 | He R D, Lee W S, Hwee T N, et al. Adaptive Semi-Supervised Learning for Cross-Domain Sentiment Classification[C]//2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 3467-3476. |
29 | 刘群, 孙红涛, 纪良浩. 一种融合文本语义和情感分析的好友推荐方法[J]. 系统仿真学报, 2016, 28(11): 2852-2859. |
Liu Qun, Sun Hongtao, Ji Lianghao. Friend Recommendation Based on Analysis of Users' Emotions and Text Semantics[J]. Journal of System Simulation, 2016, 28(11): 2852-2859. | |
30 | 庄穆妮, 李勇, 谭旭, 等. 基于BERT-LDA模型的新冠肺炎疫情网络舆情演化仿真[J]. 系统仿真学报, 2021, 33(1): 24-36. |
Zhuang Muni, Li Yong, Tan Xu, et al. Evolutionary Simulation of Online Public Opinion Based on the BERT-LDA Model under COVID-19[J]. Journal of System Simulation, 2021, 33(1): 24-36. | |
31 | Gao K, Anandhan P, Kumar R. Analysis and Evaluation of the Regional Air Quality Index Forecasting Based on Web-Text Sentiment Analysis Method[J]. Environmental Impact Assessment Review(S0915-9255), 2021, 87: 106514. |
[1] | Xingquan Cai, Zhijun Li, Mengyao Xi, Haiyan Sun. Costume Pattern Sketch Colorization and Style Transfer Based on Neural Network [J]. Journal of System Simulation, 2023, 35(3): 604-615. |
[2] | Jianfang Cao, Yiming Jia, Minmin Yan, Xiaodong Tian. Murals Super-resolution Reconstruction with the Stable Enhanced Generative Adversarial Network [J]. Journal of System Simulation, 2022, 34(5): 1076-1089. |
[3] | Xu Kang, Xiaofeng Zhang. Radar Remote Sensing Data Augmentation Method Based on Generative Adversarial Network [J]. Journal of System Simulation, 2022, 34(4): 920-927. |
[4] | Hu Lei, Wang Zugen, Chen Tian, Zhang Yongmei. An Improved SRGAN Infrared Image Super-Resolution Reconstruction Algorithm [J]. Journal of System Simulation, 2021, 33(9): 2109-2118. |
[5] | Cheng Wencong, Shi Xiaokang, Wang Zhigang. Creating Synthetic Satellite Cloud Data Based on GAN Method [J]. Journal of System Simulation, 2021, 33(6): 1297-1306. |
[6] | Li Xinli, Zou Changming, Yang Guotian, Liu He. Research of Super-resolution Processing of Invoice Image Based on Generative Adversarial Network [J]. Journal of System Simulation, 2021, 33(6): 1307-1314. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||