| 1 | Hirose S. Biologically Inspired Robots: Snake-like Locomotors and Manipulators[M]. Oxford: Oxford University Press, 1993. | 
																													
																							| 2 | Kelasidi E, Pettersen K Y, Liljeback P, et al. Locomotion Efficiency of Underwater Snake Robots with Thrusters [C]// 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics. Lausanne, Switzerland: IEEE, 2016: 174-181. | 
																													
																							| 3 | Wright C, Buchan A, Brown B, et al. Design and Architecture of the Unified Modular Snake Robot[C]// International Conference on Robotics and Automation. St Paul, MN: IEEE, 2012: 4347-4354. | 
																													
																							| 4 | 郁树梅, 王明辉, 马书根, 等. 水陆两栖蛇形机器人的研制及其陆地和水下步态[J]. 机械工程学报, 2012, 48(9): 18-25. | 
																													
																							|  | Yu Shumei, Wang Minghui, Ma Shugen, et al. Development of Amphibious Snake-Like Robot and Its Land and Underwater Gait[J]. Journal of Mechanical Engineering, 2012, 48(9): 18-25. | 
																													
																							| 5 | 唐敬阁, 李斌, 常健, 等. 水下滑翔蛇形机器人滑翔运动建模与优化控制[J]. 东南大学学报(自然科学版), 2019, 49(1): 94-100. | 
																													
																							|  | Tang Jingge, Li Bin, Chang Jian, et al. Modeling and Optimal Control on Gliding Motion of Underwater Gliding Snake-Like Robot[J]. Journal of Southeast University(Natural Science), 2019, 49(1): 94-100. | 
																													
																							| 6 | 魏武, 张杰, 高勇, 等. 基于旋量与包络理论的蛇形机器人安全攀爬[J]. 华南理工大学学报(自然科学版), 2019, 47(10): 13-23. | 
																													
																							|  | Wei Wu, Zhang Jie, Gao Yong, et al. Safe Climbing of Snake-Like Robot Based on Screw and Envelope Theory[J]. Journal of South China University of Technology (Natural Science), 2019, 47(10): 13-23. | 
																													
																							| 7 | Soha P, Khodabakhsh M, Spröwitz A, et al. Spinal Joint Compliance and Actuation in a Simulated Bounding Quadruped Robot[J]. Autonomous Robots(S0929-5593), 2017, 41(2): 437-452. | 
																													
																							| 8 | Li J, Lam J, Liu M, et al. Compliant Control and Compensation for a Compact Cable-Driven Robotic Manipulator[J]. IEEE Robotics and Automation Letters(S2377-3766), 2020, 5(4): 5417-5424. | 
																													
																							| 9 | Crespi A, Karakasiliotis K, Guignard A, et al. Salamandra Robotica II: An Amphibious Robot to Study Salamander-Like Swimming and Walking Gaits[J]. IEEE Transactions on Robotics(S1552-3098), 2013, 29(2): 308-320. | 
																													
																							| 10 | Vespignani M, Melo K, Mutlu M, et al. Compliant Snake Robot Locomotion on Horizontal Pipes[C]// 2015 IEEE International Symposium on Safety, Security, and Rescue Robotics. West Lafayette, IA: IEEE, 2015: 1-6. | 
																													
																							| 11 | Qiao G F, Wen X L, Song G M, et al. Effects of the Compliant Intervertebral Discs in the Snake-Like Robots: A Simulation Study[C]// International Conference on Robotics and Biomimetics. Qingdao, China: IEEE, 2016: 813-818. | 
																													
																							| 12 | Park Y J, Huh T M, Park D, et al. Design of a Variable-Stiffness Flapping Mechanism for Maximizing the Thrust of a Bio-Inspired Underwater Robot [J]. Bioinspiration & Biomimetics(S1748-3182), 2014, 9(3): 1-11. | 
																													
																							| 13 | Sato T, Kano T, Ishiguro A. On the Applicability of the Decentralized Control Mechanism Extracted from the True Slime Mold: a Robotic Case Study with a Serpentine Robot[J]. Bioinspiration & Biomimetics(S1748-3182), 2011, 6(2): 1-12. | 
																													
																							| 14 | Travers M, Choset H. Use of the Nonlinear Observability Rank Condition for Improved Parametric Estimation[C]// 2015 IEEE International Conference on Robotics and Automation. Seattle, USA: IEEE, 2015: 1029-1035. | 
																													
																							| 15 | Kakogawa A, Jeon S, Ma S G. Stiffness Design of a Resonance-Based Planar Snake Robot with Parallel Elastic Actuators[J]. IEEE Robotics and Automation Letters(S2377-3766), 2018, 3(2): 1284-1291. | 
																													
																							| 16 | Zhang D, Yuan H, Cao Z C. Environmental Adaptive Control of a Snake-Like Robot with Variable Stiffness Actuators[J] IEEE-CAA Journal of Automatica Sinica (S2329-9266), 2020, 7(3): 745-751. | 
																													
																							| 17 | Sato T, Kano T, Ishiguro A. A Decentralized Control Scheme for an Effective Coordination of Phasic and Tonic Control in a Snake-Like Robot[J]. Bioinspiration & Biomimetics(S1748-3182), 2012, 7(1): 1-12. | 
																													
																							| 18 | 吴伟, 李博, 刘娜娜, 等. 轮式牵引机器人优化设计及运动特性分析[J]. 系统仿真学报, 2020, 32(5): 918-926. | 
																													
																							|  | Wu Wei, Li Bo, Liu Nana, et al. Optimization Design and Locomotion Characteristics Analysis of Wheeled Traction Robot[J]. Journal of System Simulation, 2020, 32(5): 918-926. | 
																													
																							| 19 | 尤波, 陶守通, 黄玲, 等. 基于MATLAB和ADAMS的肌电假手联合仿真[J]. 系统仿真学报, 2017, 29(5): 957-964. | 
																													
																							|  | You Bo, Tao Shoutong, Huang Ling, et al. Coordinated Simulation of EMG Prosthetic Hand Based on MATLAB and ADAMS[J]. Journal of System Simulation, 2017, 29(5): 957-964. | 
																													
																							| 20 | 乔贵方, 韦中, 张颖, 等. 基于双层级CPG的3维蛇形机器人运动控制方法[J].机器人, 2019, 41(6): 779-787. | 
																													
																							|  | Qiao Guifang, Wei Zhong, Zhang Ying, et al. Double-Layered CPG Based Motion Control Method of the 3D Snake-Like Robot[J]. Robot, 2019, 41(6): 779-787. |