Journal of System Simulation ›› 2018, Vol. 30 ›› Issue (2): 386-397.doi: 10.16182/j.issn1004731x.joss.201802003
Previous Articles Next Articles
Si Guangya, Zhang Yang, Wang Yanzheng
Online:
2018-02-08
Published:
2019-01-02
CLC Number:
Si Guangya, Zhang Yang, Wang Yanzheng. Review on Modeling and Simulation of Cyberspace Operation[J]. Journal of System Simulation, 2018, 30(2): 386-397.
[1] | United States Cyber Command. Joint Publication 3-12 Cyberspace Operations[R]. Washington DC: United States Cyber Command, 2013. |
[2] | 谈何易. 联合作战中的网络战[M]. 北京: 解放军出版社, 2013.Tan Heyi. Cyberspace Operation in Joint Operations[M]. Beijing: PLA Press, 2013. |
[3] | 吴晔, 倪俊. 美军推进网络战融入联合作战的做法[J]. 信息对抗学术, 2014(1): 82-84. Wu Ye, Ni Jun. The Method of US Military to Fuse Cyberspace Operation in Joint Operations[J]. Information War, 2014(1): 82-84. |
[4] | 闫巍. 2030年的武器装备[M]. 北京: 国防工业出版社, 2014: 52-56. Yan Wei. Weapons and Equipment of 2030[M]. Beijing: National Defense Industry Press, 2014:52-56. |
[5] | 康峰. 美国“国家网电靶场”浅析[J]. 外军信息战, 2012(5): 6-9. Kang Feng. Analysis of NCR[J]. Information War of Foreign Military, 2012(5): 6-9. |
[6] | Raytheon Company. Raytheon Cyber[EB/OL].(2017-03-12)[2018-01-06].http://www.raytheon.com/cyber. |
[7] | CSIAC. Benjamin Foulois Cyber Proving Ground (CPG)[EB/OL].(2017-02-17)[2018-01-06]. www.24af.af.mil/cpg. |
[8] | 克里斯•P. 温格曼. 军事网络建设规划与发展态势—美国空军网络司令部司令在美国参议院军事委员会网络安全附属委员会上的讲话[R]. 江阴: 知远战略与防务研究所, 2017: 8-10. Chris P Weggeman. Presentation to the Senate Armed Services Committee Subcommittee on Cybersecurity United States Senate [R]. Jiangyin: Knowfar Institute for Strategic & Defence Studies, 2017: 8-10. |
[9] | Maire C C N L, Franz C T C. 24 AF Requirements and The Maj Gen “Benny” Foulois Cyber Proving Ground[R]. US 24th Air Force, 2016. |
[10] | Mark Pomerleau. DOD's Long Path to Creating A Cyber Warrior Workforce[EB/OL]. (2016-03-04) [2018-01-06]. http://www.defensesystems.com. |
[11] | DAPRA. Foundational Cyberwarfare(Plan X): DAPRA-BAA-13-02[R]. Washington DC: DAPRA, 2012. |
[12] | 黄维真, 何荷. “X计划”:美军网络作战路线图[J]. 环球军事, 2013(19): 23. Huang Weizhen, He He. “X Plan” : the U.S. Military Cyberspace Operation Vision[J]. Global Military, 2013(19): 23. |
[13] | B K. DARPA? demos Deep Green[EB/OL]. (2011-04-07) [2018-01-06]. http://www.defensesys- tems.com. |
[14] | 胡晓峰, 郭圣明, 贺筱媛. 指挥信息系统的智能化挑战——“深绿”计划及AlphaGo带来的启示与思考[J]. 指挥信息系统与技术, 2016, 7(3): 1-7. Hu Xiaofeng, Guo Shengming, He Xiaoyuan. Chall- enges to Intelligent Command Information System: Reason And Revelation on ‘Deep Green’ Plan and AlphaGo[J]. Command Information System and Technology, 2016, 7(3): 1-7. |
[15] | H W, Q L, G A, et al.Effect of The Intercon- nected Network Structure on The Epidemic Threshold[J]. Physical Review E (S2470-0045), 2013, 88(2): 022801. |
[16] | Dayou L, Bo Y, Shang G, et al.Intelligent CPSS and its application to health care computing[J]. Science China: Information Sciences (S1674-733X), 2016, 59(5): 90-92. |
[17] | 王飞跃. 指控5.0:平行时代的智能指挥与控制体系[J]. 指挥与控制学报, 2015, 1(1):107-110. Wang Feiyue. CC 5.0: Intelligent Command and Control Systems in the Parallel Age[J]. Journal of Command and Control, 2015, 1(1) :107-110. |
[18] | J Malone P.Offense-Defense Balance in Cyber- space: A Proposed Model[R]. California, Monterey: Naval Postgraduate School, 2012. |
[19] | 王菁, 王珩, 周光霞. 网络电磁空间目标防御价值分析[C]//第三届中国指挥控制大会. 中国, 北京. 2015: 618-623.Wang Jing, Wang Heng, Zhou Guangxia. Analysis of Targets’ Defense Value in Cyber Electromagnetic Space [C]// 3th China Com- mand and Control Conference. China, Beijing. 2015: 618-623. |
[20] | Air Force Research Laboratory. High Performance Computing (HPC) For Real-Time Course Of Action (COA) Analysis[R]. Wright-Patterson Air Force Base, WPAFB, OH 45433-7531: AFRL, 2008. |
[21] | 吴元立, 司光亚, 罗批. 多约束条件下互联网骨干网络路由器级拓扑生成方法[J]. 国防科技大学学报, 2016, 38(3): 167-169. Wu Yuanli, Si Guangya, Luo Pi. Router-level Topology Generation Research for Internet Backbone Networks under Multiple Constraints[J]. Journal National University of Defense Technology, 2016, 38(3): 167-169. |
[22] | Yuanli Wu, Si G, Wang Y, et al.Modeling Internet Backbone Traffic Based on Multi-Commodity Flow[C]//MEMTIE 2014. Hunan, Changsha: 2014: 8-9. |
[23] | Suzuki J, Suda T.Bionet Project Overview[R]. USA, Irvine: University of California, 2001. |
[24] | Kelic A A, Ewarren D, Illips L R P. Cyber and Physical Infrastructure Interdependencies[R]. New Mexico, Albuquerque: Sandia Nation Laboratories, 2008. |
[25] | Zhang Y, Shansong C, Deping X.Simulation Experiment Research of Cyberspace Confront Effec- tiveness Evaluation[C]// 2013 IEEE International Conference on Green Computing and Communi- cations and IEEE Internet of Things and IEEE Cyber Physical and Social Computing. China, Beijing, 2013. |
[26] | Haoran J, Weidong B, Zhiyong Z.Hierachical, Multi-perspectives Model for Cyberspace Situation[C]//3th International Conference Mutimedia Infor -mation Networking and Security. China, Beijing, 2011: 420-424. |
[27] | Ilachinski A.EINSTein: An Artificial-Life Labor -atory for Exploring Self-Organized Emergence in Land Combat[R]. CNA Research Memorandum CRM, 2000: 239. |
[28] | 廖守亿, 王仕成, 张金生. 复杂系统基于Agent的建模与仿真[M]. 北京: 国防工业出版社, 2015: 1-2. Liao Shouyi, Wang Shicheng, Zhang Jinsheng. Agent-based Modeling and Simulation for Complex Systems[M]. Beijing: National Defense Industry Press, 2015: 1-2. |
[29] | Bailey N T J. The mathematical Theory of Infectious Diseases and Its application[M]. New- York: Hafner Press, 1975. |
[30] | P H, B J K, C N Y, et al.Attack vulnerability of complex networks[J]. Physical Review E(S2470-0045), 2002, 65(5). |
[31] | C.Onwubiko, A P Lenaghan, L Hebbes.An Improved Worm Mitigation Model for Evaluating the Spread of Aggressive Network Worms[C]//IEEE: EUROCON 2005, Serbia, Belgrade, 2005. |
[32] | E R.Diffusion of Innovations[M]. New York: Free Press, 1983. |
[33] | Parsons D, Surdu L J.OneSAF: A Next Generation Simulation Modeling the Contemporary Operating Environment[R]. Orlando: Simulation Training and Instrumentation, 2005. |
[34] | 黄乘静, 郭慧志, 李子峰, 等. 预己从严:兵棋推演及其应用[M]. 北京: 航空工业出版社, 2015: 20-21. Huang Chengjing, Guo Huizhi, Li Zifeng, et al. Strict Self-evaluation: Wargame Derivation and Application[M]. Beijing: China Aviation Press, 2015: 20-21. |
[35] | Whitley. Attribution of Attack Trees[J]. Compute Electronic Eng (S0045-7906), 2011, 37(4): 624-626. |
[36] | S J, S N.Topological Vulnerability Analysis: A Powerful New Approach for Network Attack Prevention, Detection, and Response[R]. Singapor: Indian Stat Institute Monograph Series, 2009. |
[37] | Gabriel I M.Biologically Inspired Risk Assessment in Cyber Security using Neural Net- works[C]// 201 410thInternational Conference on Communications. China, Guangzhou, 2014. |
[38] | Yeon K J, Jong K H.Defining Security Primitives for Eliciting Flexible Attack Scenarios Through CAPEC Analysis[R]. USA, Pittsburgh: Carnegie Mellon University , 2015. |
[39] | CAPEC. Common Attack Pattern Enumeration and Classification[EB/OL]. (2017-03-10) [2018-01-07]. http://capec.mitre.org. |
[40] | Li C, Si G, Wan Y.Network Application with High-fidelity Modeling of Worm Containment with Benign Worms[C]//2013 Mechanical Engineering, Intelligent System and Applied Mechanics. China, Wuhan: 2013: 184-189. |
[41] | 张芳, 司光亚, 罗批. 信息传播建模仿真中的心理模型研究[J]. 计算机仿真, 2013, 30(2): 165-166. Zhang Fang, Si Guangya, Luo Pi. Psychology Models of Modeling and Simulation on Information Spreading [J]. Computer Simulation, 2013, 30(2): 165-166. |
[42] | 崔超, 罗批. 面向战略问题决策分析的病毒传播模型及可视化[J]. 指挥与控制学报, 2016, 2(10): 6. Cui Chao, Luo Pi. Virus Propagation Model and Visualization for Decision Analysis of Strategic Problems [J]. Journal of Command and Control, 2016, 2(10): 6. |
[43] | D B C, M S R, A L E.Suppressing Cascades of Load in Interdependent Networks[J]. Proceedings of the National Academy of Sciences (S1091-6490), 2012, 109(12): 4345-4346. |
[44] | Davis P K.Illustrating a Model-Game-Model Paradigm for Using Human Wargames in Analysis[R]. USA, Santa Monica: RAND National Security Research Division, 2017. |
[45] | IDobson, Carreras B A, Lynch V E. An initial model for comples dynamics in electric power system blackouts[C]//34th Hawaii International Conference on System Sciences. USA, Hawaii : 2001: 710-718. |
[46] | Yi X, Guangya S.Modeling the Power Generation Dispatching in Cyber Physical Interdependent Perspective[C]//ICSC 2012. China, Shanghai: 2012: 1-9. |
[47] | 邓斯佳. 美国网络战发展新趋势[N].学习时报, 2017.Deng Sijia. The Trend of Cyberspace Operation in the USA[N]. Study News, 2017. |
[48] | U.S. Army. Army Wargames Hone Battlefield Cyber Teams[EB/OL]. (2016-11-10) [2018-01-07]. http://breakingdefense.com/2016/11/army-wargames-hone-battlefield-cyber-teams. |
[49] | 马林立. 外军网电空间战——现状与发展[M]. 北京: 国防工业出版社, 2012.Ma Linli. Foreign Armed Force Cyber Operations Present and Future[M]. Beijing: National Defense Industry Press, 2012. |
[50] | U.S. Army. Army releases new cyber,EW field manual[EB/OL]. (2017-03-20) [2018-01-07]. http://www.c4isrnet.com/ articles/army-releases-new-cyber-ew-field-manual. |
[51] | 逯杰, 谈何易, 焦建伟. 联合作战中网络电磁空间作战的核心在于“跨域施效”[J]. 军事学术, 2017(3): 32-35. Lu Jie, Tan Heyi, Jiao Jianwei. The core of Cyberspace Operation in Joint Operations is “Cross-domain Effect”[J]. Military Art Journal, 2017(3): 32-35. |
[52] | U.S. Army.Multi-Domain Battle: Combined Arms for the 21st Century[R]. Washington DC: U.S. Army, 2017. |
[53] | Perkins D. Multi-Domain Battle: Joint Combined Arms Concept for the 21ST Century[EB/OL]. (2016-11-14) [2018-01-08]. http://www.ausa.org/art- icle. |
[54] | Chris Terry. Sinews of Multi-Domain Battle[EB/OL]. (2016-12-30) [2018-01-07]. http://www.RealClearDefense.com/ articles/2016/12/30. |
[55] | 田罗庚, 王荃, 惠军华. 美国全球公域介入与联合作战构想对我国军事战略的影响及对策[J]. 西安通信学院学报, 2016, 15(2): 96-98.Tian Luogeng, Wangquan, Hui Junhua. The influence and Countermeasures of American joint concept for access in the global commons and joint operations on China's military strategy[J]. Journal of Xi'an Communication Institute, 2016, 15(2): 96-98. |
[56] | 段君泽. 俄式“混合战争”实践及其影响[J]. 现代国际关系, 2017(3): 31-36.Duan Junze. The practice and effect of Russian "mixed war"[J]. Contemporary Internal Relations, 2017(3): 31-36. |
[57] | Clark B, Gunzinger M, Sloman J.Winning in the Gray Zone-Using Electromagnetic Warfare to Regain Escalation Dominance[R]. USA , Washington DC: Center for Strategic and Budgetary Assessments (CSBA), 2017. |
[58] | Knowles J.Regaining the Advantage Cognitive Electronic Warfare[J]. The Journal of Electronic defense(736B0050), 2016(12): 8. |
[59] | Majumdar D. 美国计划采用认知电子战技术挫败俄罗斯和中国雷达[J]. 国际电子战, 2016(2): 3-5.Majumdar D. The USA Want to Use the Cognitive EW Technology to Beat the Radars of China and Russia[J]. International EW, 2016(2): 3-5. |
[60] | 罗旭. 控脑技术发展及其军事应用预测研究[D]. 重庆: 第三军医大学, 2016.Luo Xu. Selecting Optimal Predictive Models: A Study on Predicting Brain-controlled Technology Development and Military Application[D]. Chongqing: The Third Military Surgeon University, 2016. |
[61] | Ding J, Si G, Ma J, et al.Mission evaluation: expert evaluation system for large-scale combat tasks of weapon system of systems[J]. SCIENCE CHINA Information Sciences, 2018, 61(1): 25. |
[62] | Peck M. What’s the Best Way to Wargame Cyberwarfare? [EB/OL]. (2016-05-08) [2018-01-05].http://www.aoc.com. |
[1] | Guoqiang Shi, Zewei Liu, Tingyu Lin, Zhao Xu, Xingyi Yang, Liqin Guo, Zhengxuan Jia. Open Cloud Architecture Design for Complex Product Modeling and Simulation System [J]. Journal of System Simulation, 2022, 34(3): 442-451. |
[2] | Feng Li, Ying Wei. Product Decisions in Presence of Social Learning and Reference Point Effect [J]. Journal of System Simulation, 2022, 34(2): 234-246. |
[3] | Fan Changjia, Du Yanqiu, Liang Di, Hu Kai, Huang Jiayan. Modeling and Simulation of Emergency Medical Resources Allocation in Shanghai during COVID-19 [J]. Journal of System Simulation, 2022, 34(1): 93-103. |
[4] | Si Guangya, Wang Yanzheng. Challenges and Reflection on Next-generation Large-scale Computer Wargame System [J]. Journal of System Simulation, 2021, 33(9): 2010-2016. |
[5] | Cao Qi, Xiang Qun, Wang Wenzheng. Research on Component-based Modeling of Simulation Entity for Logistics and Equipment Support [J]. Journal of System Simulation, 2021, 33(6): 1233-1240. |
[6] | Li Wenxiang, Li Ye, Dong Jieshuang, Li Yiming. Development Paths of New Energy Vehicles Incorporating CO2 Emissions Trading Scheme [J]. Journal of System Simulation, 2021, 33(6): 1451-1465. |
[7] | Zheng Lingsha, Jiang Bing, Zhao Zhe, Yang Zhaoxu. Research on Time Performance Simulation and Analysis Technology of Aviation Complex Embedded System [J]. Journal of System Simulation, 2021, 33(6): 1489-1499. |
[8] | Zhang Lin, Lu Han. Discussing Digital Twin from of Modeling and Simulation [J]. Journal of System Simulation, 2021, 33(5): 995-1007. |
[9] | Duan Hong, Qiu Xiaogang, Xie Xu, Ju Rusheng. Study on Composition of Simulation Discipline Knowledge Areas [J]. Journal of System Simulation, 2021, 33(4): 763-772. |
[10] | Wang Ling, Wu Chuge, Fan Wenhui. A Survey of Edge Computing Resource Allocation and Task Scheduling Optimization [J]. Journal of System Simulation, 2021, 33(3): 509-520. |
[11] | Li Feng, Wei Ying. Simulation Analysis of Impact of Complex Network on Herd Effect [J]. Journal of System Simulation, 2021, 33(3): 539-553. |
[12] | Chu Yang, Liu Zhi, Dou Lintao. Modeling and Simulation Technology of Flight Maneuver for Large Scale battlefield [J]. Journal of System Simulation, 2021, 33(3): 613-621. |
[13] | Ma Jun, Yang Jingyu, Wu Xi. Research on Experimental Method of Joint Operation Simulation Based on Human-machine Hybrid Intelligence [J]. Journal of System Simulation, 2021, 33(10): 2323-2334. |
[14] | Wang Junfeng, Zhang Yufan, Shao Yaoqi, Li Shiqi. Research on Simulation Data Mapping for Production Performance Digital Twin [J]. Journal of System Simulation, 2021, 33(10): 2470-2477. |
[15] | Zhou Yuchen, Lin Shengling, Ma Ping, Li Wei, Yang Ming. Research Progress on Weapon and Equipment Effectiveness Evaluation [J]. Journal of System Simulation, 2020, 32(8): 1413-1424. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||