Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (3): 791-802.doi: 10.16182/j.issn1004731x.joss.23-1323
• Papers • Previous Articles
Jiang Dawei1, Dong Yangyang1, Zhang Lidong2, Lu Xiao1, Dong Chunxi1
Received:
2023-11-03
Revised:
2024-01-09
Online:
2025-03-17
Published:
2025-03-21
Contact:
Dong Yangyang
CLC Number:
Jiang Dawei, Dong Yangyang, Zhang Lidong, Lu Xiao, Dong Chunxi. Research on Air Target Threat Assessment Technology Based on Deep Learning[J]. Journal of System Simulation, 2025, 37(3): 791-802.
Table 2
Aerial target original parameter information set
参数 | 目标1 | 目标2 | 目标3 | 目标4 | 目标5 | 目标6 | ||
---|---|---|---|---|---|---|---|---|
威胁等级 | 3 | 2 | 1 | 2 | 3 | 0 | ||
类型 | 战斗机 | 轰炸机 | 预警机 | 电子战机 | 战斗机 | 直升机 | ||
最大瞬时转弯角速度/ | 13 | 5 | 7 | 9 | 17 | 5 | ||
最大瞬时加速度/ | 3.5 | 0.9 | 1.2 | 1.4 | 3 | 0.5 | ||
最大瞬时爬升率/( | 180 | 45 | 40 | 60 | 150 | 15 | ||
火力攻击能力 | 强 | 强 | 较差 | 一般 | 较强 | 一般 | ||
电磁干扰攻击能力 | 较差 | 较差 | 一般 | 强 | 一般 | 差 | ||
最大飞行高度/km | 18 | 20 | 15 | 12 | 15 | 2 | ||
最大飞行速度/(m/s) | 700 | 550 | 610 | 480 | 650 | 220 | ||
最大作战半径/km | 1 500 | 2 000 | 1 800 | 1 200 | 1 550 | 500 | ||
RCS/ | 0.5 | 5 | 9 | 7 | 1 | 15 | ||
雷达主要功能 | 武器控制 | 武器控制 | 警戒引导 | 侦察 | 武器控制 | 其它 | ||
雷达最大探测距离/km | 1 000 | 700 | 3 000 | 2 400 | 800 | 200 | ||
雷达距离分辨力/m | 2 | 20 | 5 | 1 | 3 | 30 | ||
雷达方位分辨力/(°) | 0.2 | 0.5 | 0.3 | 0.1 | 0.4 | 2 | ||
雷达速度分辨力(m/s) | 2 | 20 | 10 | 5 | 8 | 30 | ||
雷达工作体制 | 相控阵 | 全相参 | 连续波 | 相控阵 | 单脉冲 | 连续波 | ||
雷达抗干扰措施 | 副瓣抑制、恒虚警、脉冲压缩 | 频率分集、 极化可变 | 频率分集、 极化可变 | 频率捷变、副瓣抑制、恒虚警 | 恒虚警、MTD | 频率 分集 |
Table 3
Aerial target threat assessment index information set
评估指标 | 目标1 | 目标2 | 目标3 | 目标4 | 目标5 | 目标6 |
---|---|---|---|---|---|---|
类型 | 1 | 1 | 0.6 | 0.8 | 1 | 0.4 |
机动能力 | 1 | 0.6 | 0.6 | 0.8 | 0.8 | 0.4 |
攻击能力 | 0.76 | 0.76 | 0.48 | 0.76 | 0.72 | 0.44 |
飞行能力 | 0.842 | 0.896 | 0.804 | 0.6 | 0.779 | 0.208 |
隐身能力 | 0.975 | 0.75 | 0.55 | 0.65 | 0.95 | 0.25 |
雷达主要功能 | 1 | 1 | 0.4 | 0.7 | 1 | 0.2 |
雷达最大探测距离 | 0.5 | 0.35 | 1 | 1 | 0.4 | 0.1 |
雷达分辨力 | 0.8 | 0.37 | 0.6 | 0.8 | 0.7 | 0.3 |
雷达抗干扰能力 | 0.7 | 0.6 | 0.9 | 1 | 0.7 | 0.3 |
1 | 柴慧敏, 张勇, 李欣粤, 等. 基于深度学习的空中目标威胁评估方法[J]. 系统仿真学报, 2022, 34(7): 1459-1467. |
Chai Huimin, Zhang Yong, Li Xinyue, et al. Aerial Target Threat Assessment Method Based on Deep Learning[J]. Journal of System Simulation, 2022, 34(7): 1459-1467. | |
2 | 徐克虎, 孔德鹏, 王国胜, 等. 陆战目标威胁评估方法及其应用[M]. 北京: 北京理工大学出版社, 2012. |
Xu Kehu, Kong Depeng, Wang Guosheng, et al. Land War Target Threat Assessment Method and Its Application[M]. Beijing: Beijing Institute of Technology Press, 2012. | |
3 | 麻士东, 韩亮, 龚光红, 等. 基于云模型的目标威胁等级评估[J]. 北京航空航天大学学报, 2010, 36(2): 150-153, 179. |
Ma Shidong, Han Liang, Gong Guanghong, et al. Target Threat Assessment Technology Based on Cloud Model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(2): 150-153, 179. | |
4 | 邸若海, 高晓光. 模糊离散动态贝叶斯网络的目标威胁等级评估[J]. 火力与指挥控制, 2012, 37(4): 14-17. |
Di Ruohai, Gao Xiaoguang. The Threaten Grade Assessment Model of Target Based on Fuzzy Discrete Dynamic Bayesian Networks[J]. Fire Control & Command Control, 2012, 37(4): 14-17. | |
5 | 陈侠, 刘子龙. 基于模糊小波神经网络的空中目标威胁评估[J]. 战术导弹技术, 2018(3): 53-59. |
Chen Xia, Liu Zilong. Evaluation of Air Target Threat Based on Fuzzy Wavelet Neural Network[J]. Tactical Missile Technology, 2018(3): 53-59. | |
6 | 傅蔚阳, 刘以安, 薛松. 基于灰狼算法与小波神经网络的目标威胁评估[J]. 浙江大学学报(工学版), 2018, 52(4): 680-686. |
Fu Weiyang, Liu Yian, Xue Song. Target Threat Assessment Using Grey Wolf Optimization and Wavelet Neural Network[J]. Journal of Zhejiang University(Engineering Science), 2018, 52(4): 680-686. | |
7 | 奚之飞, 徐安, 寇英信, 等. 基于PCA-MPSO-ELM的空战目标威胁评估[J]. 航空学报, 2020, 41(9): 211-226. |
Xi Zhifei, Xu An, Kou Yingxin, et al. Target Threat Assessment in Air Combat Based on PCA-MPSO-ELM Algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 211-226. | |
8 | 郭恩泽, 张洪德, 杨雷, 等. 基于改进残差网络的雷达辐射源信号识别[J]. 无线电工程, 2022, 52(12): 2178-2185. |
Guo Enze, Zhang Hongde, Yang Lei, et al. Radar Emitter Signal Recognition Based on Improved Residual Network[J]. Radio Engineering, 2022, 52(12): 2178-2185. | |
9 | 向崇文, 姜青山, 杨辉. 海上电子战目标威胁分析与评估[J]. 现代防御技术, 2016, 44(6): 148-154. |
Xiang Chongwen, Jiang Qingshan, Yang Hui. Threat Analysis and Assessment of Maritime Electronic Warfare Target[J]. Modern Defence Technology, 2016, 44(6): 148-154. | |
10 | 郑都民. 集群空战中的群威胁评估及目标分配关键技术研究[D]. 西安: 西安电子科技大学, 2020. |
Zheng Dumin. Key Technology Research of Group Threat Assessment and Target Allocation in Cluster Air Combat[D]. Xi'an: Xidian University, 2020. | |
11 | 付涛, 王军. 防空系统中空中目标威胁评估方法研究[J]. 指挥控制与仿真, 2016, 38(3): 63-69. |
Fu Tao, Wang Jun. Threat Assessment of Aerial Targets in Air-defense[J]. Command Control & Simulation, 2016, 38(3): 63-69. | |
12 | 丁鹭飞, 耿富录. 雷达原理[M]. 3版. 西安: 西安电子科技大学出版社, 2002. |
Ding Lufei, Geng Fulu. Principles of Radar[M]. 3rd ed. Xi'an: Xidian University Press, 2002. | |
13 | 崔国龙, 余显祥, 魏文强, 等. 认知智能雷达抗干扰技术综述与展望[J]. 雷达学报, 2022, 11(6): 974-1002. |
Cui Guolong, Yu Xianxiang, Wei Wenqiang, et al. An Overview of Antijamming Methods and Future Works on Cognitive Intelligent Radar[J]. Journal of Radars, 2022, 11(6): 974-1002. | |
14 | 袁非牛, 章琳, 史劲亭, 等. 自编码神经网络理论及应用综述[J]. 计算机学报, 2019, 42(1): 203-230. |
Yuan Feiniu, Zhang Lin, Shi Jinting, et al. Theories and Applications of Auto-encoder Neural Networks: A Literature Survey[J]. Chinese Journal of Computers, 2019, 42(1): 203-230. | |
15 | 乔思波, 庞善臣, 王敏, 等. 基于残差混合注意力机制的脑部CT图像分类卷积神经网络模型[J]. 电子学报, 2021, 49(5): 984-991. |
Qiao Sibo, Pang Shanchen, Wang Min, et al. A Convolutional Neural Network for Brain CT Image Classification Based on Residual Hybrid Attention Mechanism[J]. Acta Electronica Sinica, 2021, 49(5): 984-991. | |
16 | 袁非牛, 章琳, 史劲亭, 等. 自编码神经网络理论及应用综述[J]. 计算机学报, 2019, 42(1): 203-230. |
Yuan Feiniu, Zhang Lin, Shi Jinting, et al. Theories and Applications of Auto-encoder Neural Networks: A Literature Survey[J]. Chinese Journal of Computers, 2019, 42(1): 203-230. | |
17 | 翟翔宇, 杨风暴, 吉琳娜, 等. 标准化全连接残差网络空战目标威胁评估[J]. 火力与指挥控制, 2020, 45(6): 39-44. |
Zhai Xiangyu, Yang Fengbao, Ji Linna, et al. Air Combat Targets Threat Assessment Based on Standardized Fully Connected Network and Residual Network[J]. Fire Control & Command Control, 2020, 45(6): 39-44. | |
18 | 刘钊闻. 基于残差卷积神经网络的地面磁共振快速成像方法[D]. 长春: 吉林大学, 2022. |
Liu Zhaowen. Fast Imaging of Surface Magnetic Resonance Sounding Based on Residual Convolutional Neural Network[D]. Changchun: Jilin University, 2022. | |
19 | 张遥, 陈西曲. 基于残差卷积自编码器(RCAE)的红外图像降噪方法研究[J]. 信息技术与信息化, 2019(12): 242-244. |
[1] | Chen Jing, Yang Guowei, Zhang Zhaochong, Wang Wei. City Regional Traffic Flow Prediction Based on Spatiotemporal Multi-view Attention Residual Network [J]. Journal of System Simulation, 2025, 37(3): 607-622. |
[2] | Guo Yecai, Tong Shuang. A Multimodal Residual Spatial-temporal Fusion Model Based on Automatic Sleep Classification [J]. Journal of System Simulation, 2024, 36(9): 2065-2074. |
[3] | Liu Zesen, Bi Sheng, Guo Chuanhong, Wang Yankui, Dong Min. Deep Learning Based Local Path Planning Method for Moving Robots [J]. Journal of System Simulation, 2024, 36(5): 1199-1210. |
[4] | Wei Jinyang, Wang Keping, Yang Yi, Fei Shumin. Incremental Image Dehazing Algorithm Based on Multiple Transfer Attention [J]. Journal of System Simulation, 2024, 36(4): 969-980. |
[5] | Yang Mei, Wang Bingkun, Zhang Zhongjie, Zeng Yan, Huang Jian. A Threat Assessment Method in Uncertain Dynamic Environments [J]. Journal of System Simulation, 2024, 36(12): 2741-2754. |
[6] | Yang Zhe, Cui Yinghan, Guo Lingxi, Li Jiaxin, Wu Xusheng. Search Technology for Aircraft Debris Integrating Data Augmentation and Deep Learning Algorithm [J]. Journal of System Simulation, 2024, 36(10): 2238-2245. |
[7] | Li Chen, He Ming, Dong Chen, Li Wei. Action Recognition Model of Directed Attention Based on Cosine Similarity [J]. Journal of System Simulation, 2024, 36(1): 67-82. |
[8] | Zhang Fengquan, Cao Duo, Ma Xiaohan, Chen Baijun, Zhang Jiangxiao. Style Transfer Network for Generating Opera Makeup Details [J]. Journal of System Simulation, 2023, 35(9): 2064-2076. |
[9] | Shuyuan Liu. An Algorithm for Obtaining Interception Guidance Routes Weighted by Threat Indexes [J]. Journal of System Simulation, 2023, 35(5): 971-978. |
[10] | Yu Du, Xinquan Yang, Jianhua Zhang, Suchun Yuan, Huachao Xiao, Jingjing Yuan. Modulation Recognition Method of Mixed Signal Based on Intelligent Analysis of Cyclic Spectrum Section [J]. Journal of System Simulation, 2023, 35(1): 146-157. |
[11] | Dayong Zhang, Jingyu Yang, Xi Wu. Research on Intelligent Prediction Method of Wargaming Air Mission [J]. Journal of System Simulation, 2023, 35(1): 212-220. |
[12] | Huimin Chai, Yong Zhang, Xinyue Li, Yanan Song. Aerial Target Threat Assessment Method based on Deep Learning [J]. Journal of System Simulation, 2022, 34(7): 1459-1467. |
[13] | Xu Kang, Xiaofeng Zhang. Radar Remote Sensing Data Augmentation Method Based on Generative Adversarial Network [J]. Journal of System Simulation, 2022, 34(4): 920-927. |
[14] | Jiarui Liu, Guotian Yang, Xiaowei Wang. A Wind Turbine Fault Diagnosis Method Based on Siamese Deep Neural Network [J]. Journal of System Simulation, 2022, 34(11): 2348-2358. |
[15] | Rongxiu Lu, Bihao Zhang, Zhenlong Mo. Fatigue Detection Method Based on Facial Features and Head Posture [J]. Journal of System Simulation, 2022, 34(10): 2279-2292. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||