Journal of System Simulation ›› 2024, Vol. 36 ›› Issue (3): 735-742.doi: 10.16182/j.issn1004731x.joss.22-1309
• Papers • Previous Articles Next Articles
Liu Fei1(
), Lai Peng2, Lu Yingbo2, Wang Min2, Lu Zhifeng2
Received:2022-11-03
Revised:2023-01-12
Online:2024-03-15
Published:2024-03-14
CLC Number:
Liu Fei, Lai Peng, Lu Yingbo, Wang Min, Lu Zhifeng. Research on Hybrid Experimental Scheme Design for Combat Simulation[J]. Journal of System Simulation, 2024, 36(3): 735-742.
Table 1
Comparison of hybrid experimental design methods
| 方法 | 优点 | 缺点 |
|---|---|---|
| 基于多种实验设计方法的混合分组因子抽样实验 | 分组灵活,可将因子分为任意离散和连续子集,每个子集采用任何一种实验设计方法 | 产生实验方案数目过多,需要运行大量仿真实验;样本空间原则上不满足整体均匀性 |
| 基于分片拉丁超立方设计的混合因子抽样实验 | 为每种离散类型因子的水平组合设计一个不同的拉丁超立方分片;充分考虑每个分片和整体的空间填充均匀性 | 只能处理较少的离散类型因子;分片数大时实验次数过多,产生实验方案数目过多 |
| 基于最大投影实验设计的混合因子抽样实验 | 可产生较少的实验方案数目;能处理更多的离散类型因子;设计结果有良好的整体均匀性和二维投影均匀性 | 方法本身较复杂,但通过封装在工具中,可以克服 |
Table 3
Results of mixed grouping factor sampling based on multiple experimental design methods
| 序号 | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 |
|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 4 | 0.82 | 7.63 | 1.03 | 19 243.90 | 2.95 | 1.18 |
| 2 | 1 | 4 | 0.71 | 3.16 | 3.20 | 23 245.30 | 3.29 | 0.95 |
| 3 | 1 | 4 | 0.80 | 1.07 | 2.06 | 9 980.30 | 1.68 | 1.68 |
| 4 | 1 | 4 | 0.90 | 4.99 | 3.72 | 13 361.40 | 2.40 | 0.36 |
| 5 | 2 | 4 | 0.85 | 6.43 | 2.59 | 21 724.10 | 1.36 | 1.28 |
| 6 | 2 | 4 | 0.79 | 4.18 | 2.27 | 12 964.40 | 3.75 | 1.88 |
| 7 | 2 | 4 | 0.75 | 4.77 | 3.27 | 6 653.18 | 2.01 | 0.56 |
| 8 | 2 | 4 | 0.85 | 2.33 | 1.25 | 18 859.50 | 2.81 | 0.24 |
| 9 | 1 | 8 | 0.77 | 6.98 | 3.99 | 15 934.30 | 2.51 | 1.60 |
| 10 | 1 | 8 | 0.80 | 1.88 | 2.95 | 11 445.40 | 3.91 | 0.48 |
| 11 | 1 | 8 | 0.73 | 3.77 | 1.88 | 20 513.20 | 1.38 | 0.70 |
| 12 | 1 | 8 | 0.89 | 5.54 | 1.62 | 7 220.82 | 2.15 | 1.06 |
| 13 | 2 | 8 | 0.84 | 1.68 | 3.62 | 14 975.50 | 1.00 | 0.85 |
| 14 | 2 | 8 | 0.72 | 5.95 | 1.40 | 8 472.10 | 1.90 | 1.50 |
| 15 | 2 | 8 | 0.75 | 7.34 | 2.70 | 16 781.10 | 3.23 | 0.18 |
| 16 | 2 | 8 | 0.87 | 3.26 | 2.38 | 24 000.90 | 3.58 | 1.41 |
Table 4
Results of mixed factor sampling based on sliced Latin hypercube design
| 序号 | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 |
|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 4 | 0.81 | 4.29 | 3.78 | 9 735.99 | 1.22 | 1.49 |
| 2 | 1 | 4 | 0.80 | 1.96 | 2.83 | 24 577.30 | 3.91 | 1.00 |
| 3 | 1 | 4 | 0.71 | 5.31 | 1.25 | 11 319.60 | 2.98 | 1.29 |
| 4 | 1 | 4 | 0.88 | 6.67 | 1.91 | 17 812.00 | 2.29 | 0.29 |
| 5 | 2 | 4 | 0.77 | 6.09 | 3.32 | 9 283.48 | 1.59 | 0.20 |
| 6 | 2 | 4 | 0.83 | 6.73 | 2.48 | 22 826.20 | 2.08 | 1.58 |
| 7 | 2 | 4 | 0.71 | 1.00 | 3.10 | 16 319.30 | 2.63 | 1.39 |
| 8 | 2 | 4 | 0.89 | 3.28 | 1.68 | 12 413.50 | 3.70 | 0.82 |
| 9 | 1 | 8 | 0.74 | 7.37 | 2.91 | 21 340.30 | 3.17 | 0.61 |
| 10 | 1 | 8 | 0.85 | 3.67 | 3.46 | 13 680.00 | 3.45 | 1.71 |
| 11 | 1 | 8 | 0.78 | 1.76 | 2.06 | 19 881.10 | 1.51 | 0.46 |
| 12 | 1 | 8 | 0.84 | 5.54 | 1.48 | 7 050.16 | 1.82 | 1.12 |
| 13 | 2 | 8 | 0.86 | 4.57 | 3.91 | 21 564.20 | 2.44 | 0.75 |
| 14 | 2 | 8 | 0.81 | 3.15 | 1.18 | 18 788.40 | 2.74 | 1.88 |
| 15 | 2 | 8 | 0.73 | 7.82 | 2.24 | 14 725.40 | 1.15 | 1.05 |
| 16 | 2 | 8 | 0.76 | 2.42 | 2.66 | 7 396.35 | 3.30 | 0.37 |
| 1 | 孔晨妍, 崔鹏. 联合作战仿真实验设计方法研究[C]//第八届中国指挥控制大会论文集. 北京: 兵器工业出版社, 2020: 674-679. |
| 2 | 杨雪生, 刘云杰, 李梦汶. 联合作战仿真实验的设计与开发[J]. 系统仿真学报, 2011, 23(7): 1522-1526. |
| Yang Xuesheng, Liu Yunjie, Li Mengwen. Design and Development of Simulation Experimentation for Joint Warfare[J]. Journal of System Simulation, 2011, 23(7): 1522-1526. | |
| 3 | 赵选民. 试验设计方法[M]. 北京: 科学出版社, 2006. |
| 4 | Wang Shuo, Liye Lü, Du Li, et al. An Improved LHS Approach for Constrained Design Space Based on Successive Local Enumeration Algorithm[C]//2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). Piscataway, NJ, USA: IEEE, 2019: 896-899. |
| 5 | Mahto Navin, Chakravarthy Satyanarayanan R. Response Surface Methodology for Design of Gas Turbine Combustor[J]. Applied Thermal Engineering, 2022, 211: 118449. |
| 6 | Chen R B, Hsieh D N, Hung Y, et al. Optimizing Latin Hypercube Designs by Particle Swarm[J]. Statistics and Computing, 2013, 23(5): 663-676. |
| 7 | 耿国庆, 王成皓, 段利斌, 等. 一种改进的约束域拉丁方抽样算法及工程应用[J]. 重庆理工大学学报(自然科学), 2020, 34(10): 58-66. |
| Geng Guoqing, Wang Chenghao, Duan Libin, et al. Formulation and Engineering Application of an Improved Constrained Domain Latin Hypercube Sampling Algorithm[J]. Journal of Chongqing University of Technology(Natural Science), 2020, 34(10): 58-66. | |
| 8 | Shang Xiaobing, Chao Tao, Ma Ping, et al. An Efficient Local Search-based Genetic Algorithm for Constructing Optimal Latin Hypercube Design[J]. Engineering Optimization, 2020, 52(2): 271-287. |
| 9 | Wang Lin, Sun Fasheng, Lin D K J, et al. Construction of Orthogonal Symmetric Latin Hypercube Designs[J]. Statistica Sinica, 2018, 28(3): 1503-1520. |
| 10 | Su Zheren, Wang Yaping, Zhou Yingchun. On Maximin Distance and Nearly Orthogonal Latin Hypercube Designs[J]. Statistics & Probability Letters, 2020, 166: 108878. |
| 11 | Qian P Z G. Sliced Latin Hypercube Designs[J]. Journal of the American Statistical Association, 2012, 107(497): 393-399. |
| 12 | Chen Hao, Yang Jinyu, Lin D K J, et al. Sliced Latin Hypercube Designs with Both Branching and Nested Factors[J]. Statistics & Probability Letters, 2019, 146: 124-131. |
| 13 | Wang Xiaodi, Chen Xueping, Lin D K J. Sliced Symmetrical Latin Hypercube Designs[J]. Journal of Statistical Planning and Inference, 2022, 218: 59-72. |
| 14 | Ba Shan, Myers W R, Brenneman W A. Optimal Sliced Latin Hypercube Designs[J]. Technometrics, 2015, 57(4): 479-487. |
| 15 | Joseph V R, Gul E, Ba Shan. Designing Computer Experiments with Multiple Types of Factors: the MaxPro Approach[J]. Journal of Quality Technology, 2020, 52(4): 343-354. |
| 16 | Kang Xiaoning, Deng Xinwei. Design and Analysis of Computer Experiments with Quantitative and Qualitative Inputs: a Selective Review[J]. WIREs Data Mining and Knowledge Discovery, 2020, 10(3): e1358. |
| 17 | 祝颂, 钱晓超, 陆营波, 等. 基于XGBoost的装备体系效能预测方法[J]. 空天防御, 2021, 4(2): 1-6. |
| Zhu Song, Qian Xiaochao, Lu Yingbo, et al. An XGBoost-based Effectiveness Prediction Method of Equipment System-of-systems[J]. Air & Space Defense, 2021, 4(2): 1-6. |
| [1] | Zhao Zejing, Shang Junliang, Qin Yanpei. Kill Chain Efficiency Evaluation Model Based on Gray DEMATEL-ANP [J]. Journal of System Simulation, 2025, 37(9): 2375-2386. |
| [2] | Fan Zeng, He Mingjun, Xing Xiangyu. Research on Digital Simulation Method for Cognitive Load Evaluation of pilots [J]. Journal of System Simulation, 2025, 37(8): 1921-1932. |
| [3] | Xie Xueyuan, Lin Chen, Wu Han, Zhao Qinglan, Gao Junfei, Hao Qiangguo, Zheng Xinqian. Research on Joint Simulation of Special Vehicle Engine Operation Characteristics Based on Virtual Driving Scenarios [J]. Journal of System Simulation, 2025, 37(8): 2163-2175. |
| [4] | Wang Zili, Gao Yuntian, Yang Dezhen, Liu Yeyang, Ren Yi. Reliability Simulation Testing and Verification Technologies for Intelligent Systems: Frontiers, Progress, and Challenges [J]. Journal of System Simulation, 2025, 37(7): 1583-1606. |
| [5] | Wu Jianping, Li Guanzhou, Zhao Shuai, Huang Ling. Intelligent Transition of Automotive Industry Driven by Autonomous Driving Simulation Testing Technology [J]. Journal of System Simulation, 2025, 37(7): 1649-1664. |
| [6] | Dong Zhiming, Hu Zhongqi, Liu Zhaoyang, Zhou Heyang. A Review of Intelligent Generation of Combat Simulation Scenarios [J]. Journal of System Simulation, 2025, 37(7): 1665-1683. |
| [7] | Li Xiutian, Wang Ling, Chen Yingwu, Xing Lining, Chen Yingguo. Multi-scenario Multi-satellite Mission Planning Method Based on Adaptive Large Neighborhood Search [J]. Journal of System Simulation, 2025, 37(7): 1836-1847. |
| [8] | Li Shijie, Li Jialin, Liu Jialun, Xu Chengqi, Dong Zhilin. Research on Scenario-driven Virtual Simulation Test Method for Autonomous Escort Function of Habor Tugs [J]. Journal of System Simulation, 2025, 37(6): 1366-1375. |
| [9] | Zhang Lei, Zhang Xuechao, Wang Chao, Bo Xianglei. An Intelligent Ambulance Regulation Model Based on Online Reinforcement Learning Algorithm [J]. Journal of System Simulation, 2025, 37(3): 584-594. |
| [10] | Zhang Bin, Lei Yonglin, Li Qun, Gao Yuan, Chen Yong, Zhu Jiajun, Bao Chenlong. Reinforcement Learning Modeling of Missile Penetration Decision Based on Combat Simulation [J]. Journal of System Simulation, 2025, 37(3): 763-774. |
| [11] | Zhang Peng, Feng Ke, Gong Jiancheng, Yang Xiaoqiang, Shen Jinxing. Combat Effectiveness Evaluation of Air Defense Missile Weapon System Based on RBF Neural Network [J]. Journal of System Simulation, 2025, 37(2): 529-540. |
| [12] | Li Weigang, Gan Lei, Wang Yongqiang. Dynamic Scene Point Cloud Mapping Method Based on LiDAR-IMU [J]. Journal of System Simulation, 2025, 37(1): 95-106. |
| [13] | Shui Jijun, Peng Daogang, Song Yankan, Zhou Qiang. Optimal Scheduling Strategy of Virtual Power Plant with Carbon Emission and Carbon Penalty Considering Uncertainty of Wind Power and Photovoltaic Power [J]. Journal of System Simulation, 2024, 36(2): 305-319. |
| [14] | Chen Shikang, Wang Zhimin, Liang Biao, Gu Kunren, Song Keman, Gao Yuan. Modeling Method of Blue Army Warship Formation Air Defense Command and Control for System-of-systems Simulation [J]. Journal of System Simulation, 2024, 36(10): 2246-2256. |
| [15] | Gong Jianxing, Wang Zimu, Yang Qilong. Training Simulation Scenario Generation Based on Particle Swarm Optimization [J]. Journal of System Simulation, 2023, 35(9): 1860-1870. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||