Journal of System Simulation ›› 2025, Vol. 37 ›› Issue (6): 1449-1461.doi: 10.16182/j.issn1004731x.joss.24-0096
• Papers • Previous Articles
Du Kangping1, Sui Lin1, Xiong Weili1,2
Received:
2024-01-24
Revised:
2024-03-29
Online:
2025-06-20
Published:
2025-06-18
Contact:
Xiong Weili
CLC Number:
Du Kangping, Sui Lin, Xiong Weili. Soft Sensor Modeling Based on Adaptive Sparse Broad Learning System[J]. Journal of System Simulation, 2025, 37(6): 1449-1461.
Table 1
Algorithm parameters for each model
模型 | 预测变量 | 特征窗口数 | 各窗口特征节点数 | 增强节点数 | 特征层正则化参数 | 增强层Dropout率 | 输出层正则化参数 |
---|---|---|---|---|---|---|---|
BLS | DBO-S | 16 | 13 | 100 | 1-4 | — | 2-30 |
DQO-S | 7 | 14 | 263 | 1-4 | — | 2-30 | |
SS-S | 13 | 12 | 118 | 1-4 | — | 2-30 | |
L1BLS | DBO-S | 16 | 13 | 100 | 1-4 | — | 2-2 |
DQO-S | 7 | 14 | 263 | 1-4 | — | 2-4 | |
SS-S | 13 | 12 | 118 | 1-4 | — | 2-5 | |
ENBLS | DBO-S | 16 | 13 | 100 | 1-4 | — | 2-2, 2-5 |
DQO-S | 7 | 14 | 263 | 1-4 | — | 2-4, 2-5 | |
SS-S | 13 | 12 | 118 | 1-4 | — | 2-5, 2-5 | |
TL-BLS | DBO-S | 16 | 13 | 100 | 1-4 | 0.05 | 2-2 |
DQO-S | 7 | 14 | 263 | 1-4 | 0 | 2-4 | |
SS-S | 13 | 12 | 118 | 1-4 | 0.3 | 2-5 |
Table 2
Simulation results of different algorithms
模型 | 预测变量 | RMSE | MAPE | R2 | 实际节点数 | |||
---|---|---|---|---|---|---|---|---|
训练集 | 测试集 | 训练集 | 测试集 | 训练集 | 测试集 | |||
BLS | DBO-S | 0.741 9 | 5.847 0 | 0.026 4 | 0.118 0 | 0.996 2 | 0.669 6 | 308 |
DQO-S | <10-4 | 8.078 1 | <10-6 | 0.038 4 | 1.000 0 | 0.941 3 | 361 | |
SS-S | 2.009 8 | 40.678 1 | 0.059 9 | 0.670 9 | 0.983 5 | -15.355 9 | 274 | |
L1BLS | DBO-S | 1.520 3 | 3.718 5 | 0.057 7 | 0.112 8 | 0.984 1 | 0.866 4 | 127 |
DQO-S | 1.231 3 | 4.140 1 | 0.010 8 | 0.030 8 | 0.999 0 | 0.984 6 | 262 | |
SS-S | 3.385 9 | 5.374 8 | 0.104 0 | 0.201 6 | 0.953 3 | 0.714 4 | 260 | |
ENBLS | DBO-S | 1.716 7 | 3.976 7 | 0.065 5 | 0.133 6 | 0.979 7 | 0.847 2 | 136 |
DQO-S | 1.655 0 | 4.383 5 | 0.014 2 | 0.033 4 | 0.998 2 | 0.982 7 | 301 | |
SS-S | 3.870 3 | 5.598 8 | 0.117 4 | 0.215 7 | 0.939 0 | 0.690 1 | 254 | |
TL-BLS | DBO-S | 1.891 9 | 1.676 6 | 0.072 6 | 0.068 7 | 0.975 3 | 0.972 8 | 166 |
DQO-S | 1.094 6 | 2.539 3 | 0.009 1 | 0.021 0 | 0.999 2 | 0.994 2 | 236 | |
SS-S | 3.164 1 | 3.748 7 | 0.101 2 | 0.148 2 | 0.959 2 | 0.861 1 | 270 |
Table 3
Simulation results of ablation experiments
模型 | 预测变量 | RMSE | MAPE | R2 | 实际节点数 | |||
---|---|---|---|---|---|---|---|---|
训练集 | 测试集 | 训练集 | 测试集 | 训练集 | 测试集 | |||
无迹LASSO | DBO-S | 1.896 5 | 2.389 5 | 0.073 6 | 0.095 4 | 0.975 2 | 0.944 8 | 168 |
DQO-S | 1.231 3 | 4.140 1 | 0.010 7 | 0.030 8 | 0.999 0 | 0.984 6 | 262 | |
SS-S | 3.178 9 | 6.598 0 | 0.104 0 | 0.286 9 | 0.958 8 | 0.569 7 | 272 | |
无Dropout | DBO-S | 1.658 0 | 2.434 2 | 0.061 5 | 0.090 5 | 0.981 1 | 0.942 7 | 129 |
DQO-S | 1.094 6 | 2.539 3 | 0.009 1 | 0.021 0 | 0.999 2 | 0.994 2 | 236 | |
SS-S | 3.067 0 | 7.296 6 | 0.095 7 | 0.219 8 | 0.961 7 | 0.473 7 | 254 | |
无LASSO | DBO-S | 3.102 2 | 3.445 4 | 0.116 7 | 0.122 2 | 0.933 7 | 0.885 3 | 308 |
DQO-S | 2.009 8 | 3.031 7 | 0.015 9 | 0.026 1 | 0.997 3 | 0.991 7 | 361 | |
SS-S | 3.498 1 | 4.739 9 | 0.112 8 | 0.191 8 | 0.950 1 | 0.777 9 | 274 | |
TL-BLS | DBO-S | 1.891 9 | 1.676 6 | 0.072 6 | 0.068 7 | 0.975 3 | 0.972 8 | 171 |
DQO-S | 1.094 6 | 2.539 3 | 0.009 1 | 0.021 0 | 0.999 2 | 0.994 2 | 236 | |
SS-S | 3.164 1 | 3.748 7 | 0.101 2 | 0.148 2 | 0.959 2 | 0.861 1 | 270 |
1 | 曹鹏飞, 罗雄麟. 化工过程软测量建模方法研究进展[J]. 化工学报, 2013, 64(3): 788-800. |
Cao Pengfei, Luo Xionglin. Modeling of Soft Sensor for Chemical Process[J]. CIESC Journal, 2013, 64(3): 788-800. | |
2 | Yuan Xiaofeng, Wang Yalin, Yang Chunhua, et al. Weighted Linear Dynamic System for Feature Representation and soft Sensor Application in Nonlinear Dynamic Industrial Processes[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1508-1517. |
3 | Liu Yi, Yang Chao, Gao Zengliang, et al. Ensemble Deep Kernel Learning with Application to Quality Prediction in Industrial Polymerization Processes[J]. Chemometrics and Intelligent Laboratory Systems, 2018, 174: 15-21. |
4 | 代学志, 熊伟丽. 基于概率选择的主动学习智能软测量建模[J]. 系统仿真学报, 2021, 33(6): 1350-1357. |
Dai Xuezhi, Xiong Weili. Active Learning Intelligent Soft Sensor Based on Probability Selection[J]. Journal of System Simulation, 2021, 33(6): 1350-1357. | |
5 | 何罗苏阳, 熊伟丽. 助训练策略下的多模型软测量建模[J]. 系统仿真学报, 2024, 36(1): 249-259. |
He Luosuyang, Xiong Weili. Multi-model Soft Sensor Modeling Under Help-training Strategy[J]. Journal of System Simulation, 2024, 36(1): 249-259. | |
6 | He Yimeng, Kong Xiangyin, Yao Le, et al. Neural Network Weight Comparison for Industrial Causality Discovering and Its Soft Sensing Application[J]. IEEE Transactions on Industrial Informatics, 2023, 19(8): 8817-8828. |
7 | Chen C L, Liu Zhulin. Broad Learning System: An Effective and Efficient Incremental Learning System Without the Need for Deep Architecture[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(1): 10-24. |
8 | Chen C L, Liu Zhulin. Broad Learning System: A New Learning Paradigm and System Without Going Deep[C]//2017 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC). Piscataway: IEEE, 2017: 1271-1276. |
9 | Fan Jianchao, Wang Xiang, Wang Xinxin, et al. Incremental Wishart Broad Learning System for Fast PolSAR Image Classification[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(12): 1854-1858. |
10 | Ye Hailiang, Li Hong, Chen C L. Adaptive Deep Cascade Broad Learning System and Its Application in Image Denoising[J]. IEEE Transactions on Cybernetics, 2021, 51(9): 4450-4463. |
11 | Chu Yonghe, Lin Hongfei, Yang Liang, et al. Hyperspectral Image Classification Based on Discriminative Locality Preserving Broad Learning System[J]. Knowledge-Based Systems, 2020, 206: 106319. |
12 | Cheng Chao, Wang Weijun, Chen Hongtian, et al. Enhanced Fault Diagnosis Using Broad Learning for Traction Systems in High-speed Trains[J]. IEEE Transactions on Power Electronics, 2021, 36(7): 7461-7469. |
13 | Pu Xiaokun, Li Chunguang. Online Semisupervised Broad Learning System for Industrial Fault Diagnosis[J]. IEEE Transactions on Industrial Informatics, 2021, 17(10): 6644-6654. |
14 | Yu Wanke, Zhao Chunhui. Broad Convolutional Neural Network Based Industrial Process Fault Diagnosis with Incremental Learning Capability[J]. IEEE Transactions on Industrial Electronics, 2020, 67(6): 5081-5091. |
15 | Chang Peng, Zhao Lulu, Meng Fanchao, et al. Soft Measurement of Effluent Index in Sewage Treatment Process Based on Overcomplete Broad Learning System[J]. Applied Soft Computing, 2022, 115: 108235. |
16 | Mou Miao, Zhao Xiaoqiang. Gated Broad Learning System Based on Deep Cascaded for Soft Sensor Modeling of Industrial Process[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-11. |
17 | Guo Jifeng, Wang Lin, Fan Kaipeng, et al. An Efficient Model for Predicting Setting Time of Cement Based on Broad Learning System[J]. Applied Soft Computing, 2020, 96: 106698. |
18 | Chen C L, Liu Zhulin, Feng Shuang. Universal Approximation Capability of Broad Learning System and Its Structural Variations[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(4): 1191-1204. |
19 | Xu Meiling, Han Min, Chen C L, et al. Recurrent Broad Learning Systems for Time Series Prediction[J]. IEEE Transactions on Cybernetics, 2020, 50(4): 1405-1417. |
20 | Jin Junwei, Chen C L. Regularized Robust Broad Learning System for Uncertain Data Modeling[J]. Neurocomputing, 2018, 322: 58-69. |
21 | Grave Édouard, Obozinski Guillaume, Bach Francis. Trace Lasso: A Trace Norm Regularization for Correlated Designs[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2011: 2187-2195. |
22 | Chen Chengbin, Pan Chudong, Chen Zepeng, et al. Structural Damage Detection via Combining Weighted Strategy with Trace Lasso[J]. Advances in Structural Engineering, 2019, 22(3): 597-612. |
23 | Wu Lin, Wang Yang, Pan Shirui. Exploiting Attribute Correlations: A Novel Trace Lasso-based Weakly Supervised Dictionary Learning Method[J]. IEEE Transactions on Cybernetics, 2017, 47(12): 4497-4508. |
24 | Wang Jing, Lu Canyi, Wang Meng, et al. Robust Face Recognition via Adaptive Sparse Representation[J]. IEEE Transactions on Cybernetics, 2014, 44(12): 2368-2378. |
25 | Krishnaraj Ashwitha, Honnasiddaiah Ramesh. Remote Sensing and Machine Learning Based Framework for the Assessment of Spatio-temporal Water Quality in the Middle Ganga Basin[J]. Environmental Science and Pollution Research, 2022, 29(43): 64939-64958. |
26 | Yuan Ming, Lin Yi. Model Selection and Estimation in Regression with Grouped Variables[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2006, 68(1): 49-67. |
27 | 熊一枫, 卢继华, 何梓珮, 等. 阴影模型的正则化无设备重建与实时定位[J]. 自动化学报, 2015, 41(6): 1159-1165. |
Xiong Yifeng, Lu Jihua, He Zipei, et al. Device-free Reconstruction and Real-time Location Based on Shadowing Model in Radio Tomographic Imaging[J]. Acta Automatica Sinica, 2015, 41(6): 1159-1165. | |
28 | 肖红军, 黄道平, 刘乙奇. 融入先验知识的径向基神经网络软测量建模[J]. 自动化仪表, 2017, 38(4): 5-8. |
Xiao Hongjun, Huang Daoping, Liu Yiqi. RBF Neural Network Modeling Integrated with Priori Knowledge for Soft-sensing[J]. Process Automation Instrumentation, 2017, 38(4): 5-8. | |
29 | Liu Yiqi, Yuan Longhua, Li Dong, et al. Process Monitoring of Quality-related Variables in Wastewater Treatment Using Kalman-elman Neural Network-based Soft-sensor Modeling[J]. Water, 2021, 13(24): 3659. |
30 | 褚菲, 苏嘉铭, 梁涛, 等. 基于lasso和elastic net的宽度学习系统网络结构稀疏方法[J]. 控制理论与应用, 2020, 37(12): 2543-2550. |
Chu Fei, Su Jiaming, Liang Tao, et al. Sparsity Method for Network Structure of Broad Learning System Based on Lasso and Elastic Net[J]. Control Theory & Applications, 2020, 37(12): 2543-2550. | |
31 | Sun Kai, Wu Xiuliang, Xue Jingyu, et al. Development of a New Multi-layer Perceptron Based Soft Sensor for SO2 Emissions in Power Plant[J]. Journal of Process Control, 2019, 84: 182-191. |
32 | 孙凯, 隋璘, 张芳芳, 等. 基于非负绞杀与长短期记忆神经网络的动态软测量算法[J]. 控制理论与应用, 2023, 40(1): 83-93. |
Sun Kai, Sui Lin, Zhang Fangfang, et al. Dynamic Soft Sensor Algorithm Based on Nonnegative Garrote and Long Short-term Memory Neural Network[J]. Control Theory & Applications, 2023, 40(1): 83-93. |
[1] | Qiu Yunfei, Bu Xiangrui, Zhang Boqiang. Dynamic Spatio-temporal Anomaly-aware Correlation Filtering Object Tracking Algorithm [J]. Journal of System Simulation, 2024, 36(2): 338-351. |
[2] | Han Ying, Wang Lehao, Wang Shumei, Zhang Xiang, Luo Xingxing. Runoff Intelligent Prediction Method Based on Broad-deep Fusion Time-frequency Analysis [J]. Journal of System Simulation, 2024, 36(2): 363-372. |
[3] | He Luosuyang, Xiong Weili. Multi-model Soft Sensor Modeling under Help-training Strategy [J]. Journal of System Simulation, 2024, 36(1): 249-259. |
[4] | Yuesheng Zhou, Weili Xiong. Integrated Soft Sensor Modeling of Fermentation Process Based on Transfer Component Analysis [J]. Journal of System Simulation, 2023, 35(3): 623-631. |
[5] | Lifeng Zhang, Yu Miao. A High Resolution Reconstruction Method of Temperature Distribution in Acoustic Tomography [J]. Journal of System Simulation, 2022, 34(09): 2065-2073. |
[6] | Dai Xuezhi, Xiong Weili. Active Learning Intelligent Soft Sensor based on Probability Selection [J]. Journal of System Simulation, 2021, 33(6): 1350-1357. |
[7] | Yang Wenfeng, Wang Yan, Ji Zhichen. Prediction of N-acetylglucosamine Content Based on RF-GA-BP Neural Network [J]. Journal of System Simulation, 2020, 32(10): 2034-2040. |
[8] | Ma Min, Guo Qi, Yan Chaoqi. ECT Image Reconstruction Algorithm Based on Generalized Regularization [J]. Journal of System Simulation, 2017, 29(8): 1851-1858. |
[9] | Fang Haiquan, Xue Huifeng, Li Ning, Fei Xi. Boiler Combustion Optimization Based on Bayesian Neural Network and Genetic Algorithm [J]. Journal of System Simulation, 2015, 27(8): 1790-1795. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||