Journal of System Simulation ›› 2024, Vol. 36 ›› Issue (6): 1334-1343.doi: 10.16182/j.issn1004731x.joss.23-0336
• Papers • Previous Articles Next Articles
Huang Lin1(), Liu Shanjun2, Wang Wei3, Gong Li1(
)
Received:
2023-03-24
Revised:
2023-04-15
Online:
2024-06-28
Published:
2024-06-19
Contact:
Gong Li
E-mail:787594765@qq.com;airforce205@163.com
CLC Number:
Huang Lin, Liu Shanjun, Wang Wei, Gong Li. Unsupervised Complex Condition Recognition Based on Stochastic Neighborhood Embedding[J]. Journal of System Simulation, 2024, 36(6): 1334-1343.
Table 1
Engine sensor data description
序号 | 符号 | 描述 |
---|---|---|
1 | T2/°C | 风扇入口总温 |
2 | T24/°C | 低压压气机出口总温 |
3 | T30/°C | 高压压气机出口总温 |
4 | T50/°C | 低压涡轮出口总温 |
5 | P2/kPa | 风扇入口压力 |
6 | P15/kPa | 外涵总压 |
7 | P30/kPa | 高压压气机出口总压 |
8 | Nf/(r/min) | 风扇物理转速 |
9 | Nc/(r/min) | 核心机物理转速 |
10 | epr | 发动机压比(P50/P2) |
11 | Ps30/kPa | 高压压气机出口静压 |
12 | Phi/(kg·s-1/kPa) | 燃油流量与P30比值 |
13 | NRf/(r/min) | 风扇换算转速 |
14 | NRc/(r/min) | 核心机换算转速 |
15 | BPR | 涵道比 |
16 | farB | 燃烧室燃气比 |
17 | htBleed | 引气焓值 |
18 | Nf_dmd/(r/min) | 设定风扇转速 |
19 | PCNfR_dmd/(r/min) | 设定核心机换算转速 |
20 | W31/(kg/s) | 高压涡轮冷却引气流量 |
21 | W32/(kg/s) | 低压涡轮冷却引气流量 |
1 | 黄林, 龚立, 姜伟, 等. 基于多源信息融合与HMM的剩余寿命预测[J]. 系统工程与电子技术, 2022, 44(5): 1747-1756. |
Huang Lin, Gong Li, Jiang Wei, et al. Remaining Useful Life Prediction Based on Multi-source Information Fusion and HMM[J]. Systems Engineering and Electronics, 2022, 44(5): 1747-1756. | |
2 | Wu R T, Jahanshahi M R. Data Fusion Approaches for Structural Health Monitoring and System Identification: Past, Present, and Future[J]. Structural Health Monitoring, 2020, 19(2): 552-586. |
3 | Huang Lin, Gong Li, Chen Yutao, et al. Trajectory Similarity Matching and Remaining Useful Life Prediction Based on Dynamic Time Warping[J]. Mathematical Problems in Engineering, 2022, 2022: 5344461. |
4 | Sammaknejad N, Zhao Yujia, Huang Biao. A Review of the Expectation Maximization Algorithm in Data-driven Process Identification[J]. Journal of Process Control, 2019, 73: 123-136. |
5 | Zhang Weiting, Yang Dong, Wang Hongchao. Data-driven Methods for Predictive Maintenance of Industrial Equipment: A Survey[J]. IEEE Systems Journal, 2019, 13(3): 2213-2227. |
6 | 张安安, 黄晋英, 冀树伟, 等. 基于卷积神经网络图像分类的轴承故障模式识别[J]. 振动与冲击, 2020, 39(4): 165-171. |
Zhang Anan, Huang Jinying, Ji Shuwei, et al. Bearing Fault Pattern Recognition Based on Image Classification with CNN[J]. Journal of Vibration and Shock, 2020, 39(4): 165-171. | |
7 | 姚鹏川. 基于数据驱动的核动力装置状态监测方法研究[J]. 核动力工程, 2020, 41(增1): 135-139. |
Yao Pengchuan. Research on Condition Monitoring Method for Nuclear Power Plants Based on Data Drive[J]. Nuclear Power Engineering, 2020, 41(S1): 135-139. | |
8 | Wang Yu, Liu Miao, Yang Jie, et al. Data-driven Deep Learning for Automatic Modulation Recognition in Cognitive Radios[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 4074-4077. |
9 | Roy Saurav, Ray Ratula, Satya Ranjan Dash, et al. Plant Disease Detection Using Machine Learning Tools with an Overview on Dimensionality Reduction[M]//Rabinarayan Satpathy, Tanupriya Choudhury, Suneeta Satpathy, et al. Data Analytics in Bioinformatics: A Machine Learning Perspective. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2021: 109-144. |
10 | Zebari Rizgar R, Adnan Mohsin Abdulazeez, Diyar Qader Zeebaree, et al. A Comprehensive Review of Dimensionality Reduction Techniques for Feature Selection and Feature Extraction[J]. Journal of Applied Science and Technology Trends, 2020, 1(2): 56-70. |
11 | Laurens van der Maaten, Hinton G. Visualizing Data Using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(86): 2579-2605. |
12 | 尚前明, 黄兴烨, 沈栋, 等. 基于改进t-SNE和RBFNN的柴油机故障诊断[J]. 船舶工程, 2023, 45(1): 91-97. |
Shang Qianming, Huang Xingye, Shen Dong, et al. Fault Diagnosis of Diesel Engine Based on Improved t-SNE and RBFNN[J]. Ship Engineering, 2023, 45(1): 91-97. | |
13 | 王金刚, 徐航, 刘海, 等. 基于t-SNE与模糊聚类的电动汽车行驶工况构建[J]. 重庆交通大学学报(自然科学版), 2022, 41(6): 126-132, 146. |
Wang Jingang, Xu Hang, Liu Hai, et al. Driving Construction of Electric Vehicles Based on t-SNE and Fuzzy Clustering[J]. Journal of Chongqing Jiaotong University(Natural Science), 2022, 41(6): 126-132, 146. | |
14 | Song Weijing, Wang Lizhe, Liu Peng, et al. Improved t-SNE Based Manifold Dimensional Reduction for Remote Sensing Data Processing[J]. Multimedia Tools and Applications, 2019, 78(4): 4311-4326. |
15 | Pouyet E, Rohani N, Katsaggelos A K, et al. Innovative Data Reduction and Visualization Strategy for Hyperspectral Imaging Datasets Using t-SNE Approach[J]. Pure and Applied Chemistry, 2018, 90(3): 493-506. |
16 | 华强. 基于t-SNE的虚拟样本生成技术研究及建模应用[D]. 北京: 北京化工大学, 2022. |
Hua Qiang. Research of Virtual Sample Generation Technology Based on t-SNE and Modeling Application[D]. Beijing: Beijing University of Chemical Technology, 2022. | |
17 | Abdi Hervé, Williams L J. Principal Component Analysis[J]. WIREs Computational Statistics, 2010, 2(4): 433-459. |
18 | Huang Hong, Shi Guangyao, He Haibo, et al. Dimensionality Reduction of Hyperspectral Imagery Based on Spatial-spectral Manifold Learning[J]. IEEE Transactions on Cybernetics, 2020, 50(6): 2604-2616. |
19 | Aremu O O, Hyland-Wood D, McAree P R. A Machine Learning Approach to Circumventing the Curse of Dimensionality in Discontinuous Time Series Machine Data[J]. Reliability Engineering & System Safety, 2020, 195: 106706. |
20 | Wen Tao, Duan Shuyu, Jiang Wen. Node Similarity Measuring in Complex Networks with Relative Entropy[J]. Communications in Nonlinear Science and Numerical Simulation, 2019, 78: 104867. |
21 | Saxena A, Goebel K, Simon D, et al. Damage Propagation Modeling for Aircraft Engine Run-to-failure Simulation[C]//2008 International Conference on Prognostics and Health Management. Piscataway, NJ, USA: IEEE, 2008: 1-9. |
22 | Rosenberg A, Hirschberg J. V-measure: A Conditional Entropy-based External Cluster Evaluation Measure[C]//Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL). Stroudsburg, PA, USA: ACL, 2007: 410-420. |
23 | McDaid A F, Greene D, Hurley N. Normalized Mutual Information to Evaluate Overlapping Community Finding Algorithms [EB/OL]. [2023-04-23]. . |
24 | Rousseeuw Peter J. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis[J]. Journal of Computational and Applied Mathematics, 1987, 20: 53-65. |
[1] | Wei Sheng, Wang Yan, Ji Zhicheng. Just-in-time Learning Energy Consumption Predictive Modeling Method in Multi-condition Production Process [J]. Journal of System Simulation, 2024, 36(6): 1378-1391. |
[2] | Xiao Peng, Xie Feng, Ni Haihong, Zhang Min, Tang Zhili, Li Ni. Research on Collaborative Optimization Method of Multi-UAV Task Allocation and Path Planning [J]. Journal of System Simulation, 2024, 36(5): 1141-1151. |
[3] | Luo Yuhang, Wu Runxiu, Cui Zhihua, Zhang Yiying, He Yeshen, Zhao Jia. Tri-training Algorithm Based on Density Peaks Clustering [J]. Journal of System Simulation, 2024, 36(5): 1189-1198. |
[4] | Zhao Yanlin, Tian Yunna. Hyper-heuristic Approach with K-means Clustering for Inter-cell Scheduling [J]. Journal of System Simulation, 2024, 36(4): 941-956. |
[5] | Shao Xuqiang, Cheng Ya, Jin Yizhong. 3D Streamline Visualization Method Based on Clustering Fusion [J]. Journal of System Simulation, 2024, 36(3): 625-635. |
[6] | Chen Jing, Zhang Zhaochong, Wang Linkai, An Mai, Wang Wei. Short-term Bus Passenger Flow Prediction Based on Convolutional Long-short-term Memory Network [J]. Journal of System Simulation, 2024, 36(2): 476-486. |
[7] | Fei Ding, Meinan Zhang, Hengheng Zhuang, Hairong Ma, Dengyin Zhang. Target Search Planning and Algorithm for Monitoring of Polar Disaster Areas [J]. Journal of System Simulation, 2023, 35(7): 1526-1538. |
[8] | Tuo Zhao, Hanqiang Deng, Jialong Gao, Jian Huang. Dynamic Target Assignment of Multiple Unmanned Aerial Vehicles Based on Clustering of Network Nodes [J]. Journal of System Simulation, 2023, 35(4): 695-708. |
[9] | Yifan He, Yulin He, Yongda Cai, Zhexue Huang. I-niceMO Enhanced Algorithm Based on Intersection Angel Geometry [J]. Journal of System Simulation, 2023, 35(4): 797-808. |
[10] | Xu Wang, Weidong Ji, Guohui Zhou, Jiahui Yang. Multi-objective Optimization Algorithm Based on Multi-index Elite Individual Game Mechanism [J]. Journal of System Simulation, 2023, 35(3): 494-514. |
[11] | Guodong Yuan, Ming He, Ziyu Ma, Weishi Zhang, Xueda Liu, Wei Li. Multiagent Following Multileader Algorithm Based on K-means Clustering [J]. Journal of System Simulation, 2023, 35(3): 616-622. |
[12] | Houming Fan, Fushan Xian, Huaiqi Wang. Takeout Distribution Routes Optimization Considering Order Clustering under Dynamic Demand [J]. Journal of System Simulation, 2023, 35(2): 396-407. |
[13] | Chen Xue, Hu Rong, Wang Hui, Li Zuocheng, Qian Bin, Li Yixu. Learning-based Ant Colony Optimization Algorithm for Solving a Kind of Complex 2-Echelon Vehicle Routing Problem [J]. Journal of System Simulation, 2023, 35(11): 2476-2495. |
[14] | Zhe Wang, Hongyuan Shao, Zihao Cong, Wenwen Ma. Simulation of Emergency Medical Materials Collaborative Distribution Considering Supplier Clustering [J]. Journal of System Simulation, 2022, 34(10): 2303-2311. |
[15] | Mingmei Li, Chenglin Wen, Shaolin Hu. A K-modes Clustering Method Based on Maximal Information Coefficient Data Preprocessing [J]. Journal of System Simulation, 2022, 34(10): 2204-2212. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||