Journal of System Simulation ›› 2024, Vol. 36 ›› Issue (3): 700-712.doi: 10.16182/j.issn1004731x.joss.22-1294
• Papers • Previous Articles Next Articles
Lu Yuanjie1(), Long Shanshan2, Zhao Hang1, Feng Guoxu2, Zhao Xiaojia2(
)
Received:
2022-10-30
Revised:
2023-01-20
Online:
2024-03-15
Published:
2024-03-14
Contact:
Zhao Xiaojia
E-mail:nuaanpu@163.com;xiaojiazhao@nuaa.edu.cn
CLC Number:
Lu Yuanjie, Long Shanshan, Zhao Hang, Feng Guoxu, Zhao Xiaojia. Effectiveness Evaluation of Heterogeneous UAV Swarms Based on a Hybrid Model[J]. Journal of System Simulation, 2024, 36(3): 700-712.
Table 1
Calculation model of UAV swarm capability index
指标 | 内涵 | 模型 | |
---|---|---|---|
通用平台能力 B | 飞行能力B1 | 飞行速度(v)、飞行高度(H)、飞行距离(D)、飞行时间(t)和载荷(Wload)受限于相应门槛值(用上标^表示) | |
经济可承受能力B2 | 平台价格(P)不应高于与之对抗的地空导弹价格(M)的50% | ||
通信导航能力B3 | 由抗干扰(b1)、加密通信(b2)、导航装置(b3)决定。其中,bi 由无人机所装载的通信导航技术对应的评分决定 | ||
生存能力B 4 | 平台需要具备低可探测性,与翼展(b)、机身长度(l)、雷达反射截面积(RCS)相关[ | ||
环境适应能力B5 | 多种环境条件下的使用能力,由温度(T),风速(vwind)、电磁环境(Ee)的影响程度决定 | ||
系统级 能力 S | 返航率S1 | 可回收无人机(Nrecycle)的百分比 | |
作战行动能力S2 | 单位时间内的出动架次,与出动架次(Nlaunch)和发射时间(tlaunch)相关 | ||
任务规划能力S3 | 单位规划时间所对应的蜂群规模,与蜂群规模(N)和任务规划时间(tplan)相关 | ||
智能自主能力S4 | 由智能决策(s1)、航路规划(s2)、协同作战(s3)能力决定。其中,si 由无人机所装载的智能化技术对应的评分决定 | ||
任务执行能力 T | 侦察干扰能力T1 | 与侦察探测(Cr)、压制干扰(Cj)能力相关。其中:Cr是探测距离(R)、搜索方位角(α)、发现概率(P)、雷达/红外体制衡量系数(g),同时跟踪目标数量(m1),同时允许攻击目标数量(m2)的函数[ | |
诱饵战能力T2 | 与诱骗敌方火力消耗的能力有关,是无诱骗时敌方对我方的目标毁伤概率(Pk0)和诱骗因子(λd)的函数 | ||
反辐射能力T3 | 与反辐射突防能力(Cs)、毁伤能力(Ck)相关。其中:Cs由我方反辐射无人机的生存能力决定,是敌方对我方反辐射无人机杀伤概率Pk函数;Ck由无人机对目标的命中率及在命中条件下的毁伤概率来决定,是无人机弹着点实际偏离目标雷达的距离(r),弹着点偏离目标雷达的标准偏差(δ),以及杀伤区半径(r0)的函数[ | ||
光电察打能力T4 | 与侦察探测(Cr)、毁伤能力(Ck)能力相关。其中:Cr与Ck的计算分别同前所述[ |
Table 5
UAV swarm capability indices (three cases)
能力 | 第1组评估值 | 第2组评估值 | 第3组评估值 |
---|---|---|---|
B1 | 0.795 1 | 0.567 7 | 0.276 2 |
B2 | 0.961 6 | 0.422 3 | 0.390 0 |
B3 | 0.944 6 | 0.632 8 | 0.247 6 |
B4 | 0.882 5 | 0.546 0 | 0.153 3 |
B5 | 0.782 8 | 0.462 4 | 0.263 2 |
S1 | 0.825 7 | 0.663 4 | 0.349 3 |
S2 | 0.881 0 | 0.622 2 | 0.285 1 |
S3 | 0.748 9 | 0.599 9 | 0.358 8 |
S4 | 0.814 1 | 0.471 4 | 0.280 7 |
T1 | 0.944 7 | 0.463 9 | 0.110 4 |
T2 | 0.837 6 | 0.635 3 | 0.258 2 |
T3 | 0.806 9 | 0.560 4 | 0.316 8 |
T4 | 0.784 3 | 0.418 5 | 0.343 6 |
1 | 胡杰, 陈化良, 刘亮, 等. 无人机蜂群作战效能评估研究[J]. 火力与指挥控制, 2022, 47(4): 164-168. |
Hu Jie, Chen Hualiang, Liu Liang, et al. Research on Operational Effectiveness Evaluation of UAV Swarm[J]. Fire Control & Command Control, 2022, 47(4): 164-168. | |
2 | 韩月明, 方丹, 张红艳, 等. 智能无人机集群协同作战效能评估综述[J]. 飞航导弹, 2020(8): 51-56. |
3 | 张子伟, 郭齐胜, 董志明, 等. 体系作战效能评估与优化方法综述[J]. 系统仿真学报, 2022, 34(2): 303-313. |
Zhang Ziwei, Guo Qisheng, Dong Zhiming, et al. Review of System of Systems Combat Effectiveness Evaluation and Optimization Methods[J]. Journal of System Simulation, 2022, 34(2): 303-313. | |
4 | Hodgkinson J, Skow A, Ettinger R, et al. Relationships Between Flying Qualities, Transient Agility, and Operational Effectiveness of Fighter Aircraft[C]//15th Atmospheric Flight Mechanics Conference. Reston, VA, USA: AIAA, 1988: AIAA 1988-4329. |
5 | Fielding J P, Nilubol O. A Design Assessment Methodology for Combat Aircraft Operational Effectiveness[C]//2nd AIAA "Unmanned Unlimited" Conf. and Workshop & Exhibit. Reston, VA, USA: AIAA, 2003: AIAA 2003-6551. |
6 | Chusilp Pawat, Charubhun Weerawut, Koanantachai Pattadon. Monte Carlo Simulations of Weapon Effectiveness Using Pk Matrix and Carleton Damage Function[J]. International Journal of Applied Physics and Mathematics, 2014, 4(4): 280-285. |
7 | Gu Hui, Song Bifeng. Study on Effectiveness Evaluation of Weapon Systems Based on Grey Relational Analysis and TOPSIS[J]. Journal of Systems Engineering and Electronics, 2009, 20(1): 106-111. |
8 | 陈国际, 姜长生, 吴庆宪. 战斗机对空作战效能评估[J]. 电光与控制, 2014, 21(9): 16-18, 25. |
Chen Guoji, Jiang Changsheng, Wu Qingxian. Operational Effectiveness Evaluation of Fighter Aircrafts in Air Combat[J]. Electronics Optics & Control, 2014, 21(9): 16-18, 25. | |
9 | 张永利, 孙治水, 周荣坤. 基于AHP-模糊综合评判法的有人机/无人机协同作战效能评估[J]. 舰船电子对抗, 2015, 38(6): 80-84, 92. |
Zhang Yongli, Sun Zhishui, Zhou Rongkun. Efficiency Evaluation of Manned/Unmanned Aerial Vehicles Coordinate Operation Based on AHP-fuzzy Synthetic Evaluation Method[J]. Shipboard Electronic Countermeasure, 2015, 38(6): 80-84, 92. | |
10 | 陈士涛, 张海林. 基于作战网络模型的异构无人机集群作战能力评估[J]. 军事运筹与系统工程, 2019, 33(1): 38-43. |
Chen Shitao, Zhang Hailin. Assessment of Fighting Capability of Heterogeneous Unmanned Aerial Vchicles Cluster Based on Operation Network Model[J]. Military Operations Research and Systems Engineering, 2019, 33(1): 38-43. | |
11 | Jia Niping, Yang Zhiwei, Yang Kewei. Operational Effectiveness Evaluation of the Swarming UAVs Combat System Based on a System Dynamics Model[J]. IEEE Access, 2019, 7: 25209-25224. |
12 | 王瑛, 史翔宇, 李超. 基于DoDAF的无人机协同作战效能评估[J]. 空军工程大学学报(自然科学版), 2020, 21(6): 66-72. |
Wang Ying, Shi Xiangyu, Li Chao. Research on Evaluation of UAV Cooperative Combat Effectiveness Based on DoDAF[J]. Journal of Air Force Engineering University(Natural Science Edition), 2020, 21(6): 66-72. | |
13 | 罗杰, 苏兵, 翟乐育. 基于BP神经网络的空中无人通信平台作战效能评估[J]. 指挥控制与仿真, 2021, 43(4): 21-25. |
Luo Jie, Su Bing, Zhai Leyu. Operational Effectiveness Evaluation of Unmanned Aerial Communication Platform Based on BP Neural Network[J]. Command Control & Simulation, 2021, 43(4): 21-25. | |
14 | 刘万祥, 滕文志, 杨玉剑, 等. 基于改进AHP和熵权法的新型雷达作战效能评估[J]. 空军预警学院学报, 2020, 34(1): 27-30. |
Liu Wanxiang, Teng Wenzhi, Yang Yujian, et al. Evaluation on Operational Efficiency of New Type Radar Based on Improved AHP and Entropy Weight Method[J]. Journal of Air Force Early Warning Academy, 2020, 34(1): 27-30. | |
15 | 栾孝丰, 温瑞. 基于UML和ADC法的舰载反舰导弹武器系统效能评估[J]. 计算机与数字工程, 2010, 38(8): 135-137, 149. |
Luan Xiaofeng, Wen Rui. Evaluation for Ship-to-ship Missile Weapon System Effectiveness Based on UML and ADC Method[J]. Computer & Digital Engineering, 2010, 38(8): 135-137, 149. | |
16 | 李元锋, 刘建平, 石成英, 等. 基于能力测试方法和探索回归分析的体系作战效能评估[J]. 系统工程与电子技术, 2014, 36(7): 1339-1345. |
Li Yuanfeng, Liu Jianping, Shi Chengying, et al. System Operational Effectiveness Evaluation Based on Capability Test Methodology and Exploratory Regression Analysis[J]. Systems Engineering and Electronics, 2014, 36(7): 1339-1345. | |
17 | 范勇, 李为民. 基于概率分析法的无人攻击机作战效能分析模型研究[J]. 现代防御技术, 2003, 31(6): 60-64. |
Fan Yong, Li Weimin. Combat Effectiveness Analysis Models Research of Unmanned Combat Aerial Vehicle Based on Probabilistic Method[J]. Modern Defence Technology, 2003, 31(6): 60-64. | |
18 | 刘帅, 寇英信, 付昭旺, 等. 基于人工神经网络的空战效能评估[J]. 电光与控制, 2010, 17(4): 26-29. |
Liu Shuai, Kou Yingxin, Fu Zhaowang, et al. Effectiveness Evaluation of Air Combat Based on Artificial Neural Network[J]. Electronics Optics & Control, 2010, 17(4): 26-29. | |
19 | 卜晓东, 张军. 基于OODA循环的反舰导弹作战效能评估研究[J]. 现代防御技术, 2021, 49(2): 13-19. |
Bu Xiaodong, Zhang Jun. Research on Operational Effectiveness Evaluation of Antiship Missile Based on OODA Cycle[J]. Modern Defence Technology, 2021, 49(2): 13-19. | |
20 | 刘强, 薛惠锋. 基于多Agent的指控系统防空作战效能评估仿真研究[J]. 微电子学与计算机, 2008, 25(2): 126-128, 132. |
Liu Qiang, Xue Huifeng. Study of Simulation and Effect Evaluation for C2 in Air-defense Operation Based on Multi-agent[J]. Microelectronics & Computer, 2008, 25(2): 126-128, 132. | |
21 | 朱宝鎏, 朱荣昌, 熊笑非. 作战飞机效能评估[M]. 2版. 北京: 航空工业出版社, 2006: 63-80. |
22 | 周延安, 梅刚. 反辐射无人机作战效能分析[J]. 舰船电子对抗, 2007, 30(1): 42-45. |
Zhou Yanan, Mei Gang. Analysis on Operational Effectiveness of Anti-radiation UAV[J]. Shipboard Electronic Countermeasure, 2007, 30(1): 42-45. | |
23 | 陈侠, 胡乃宽. 基于APSO-BP神经网络的无人机空地作战效能评估研究[J]. 飞行力学, 2018, 36(1): 88-92. |
Chen Xia, Hu Naikuan. Research on Effectiveness Evaluation of UAV Air-to-ground Attack Based on APSO-BP Neural Network[J]. Flight Dynamics, 2018, 36(1): 88-92. |
[1] | Wang Yinsong, Wang Kai. Performance Evaluation Method for Load Control System Considering “Two Detailed Rules” [J]. Journal of System Simulation, 2021, 33(3): 710-720. |
[2] | Liu Haozhe, Li Wei, Ma Ping, Yang Ming. System Performance Evaluation Method Based on Multi-source Prior Data [J]. Journal of System Simulation, 2021, 33(11): 2673-2680. |
[3] | Sun Yifei, Cai Liangliang, Zhou Yi, Zhou Zhong. MRMark: A Machine Performance Evaluation Method for Three-dimensional Video Fusion [J]. Journal of System Simulation, 2020, 32(7): 1375-1384. |
[4] | Tianyu Huang, Yunying Guo. Research of Nonlinear Time Series Prediction Method for Motion Capture [J]. Journal of System Simulation, 2018, 30(7): 2808-2815. |
[5] | Yang Kun, Ge Xiangyu, Ju Pengfei, Bai Jie. Evaluation on Pilot Performance of Detecting Runway Incursion Based on Visual Simulation [J]. Journal of System Simulation, 2018, 30(5): 1967-1973. |
[6] | Wang Yuxiao, Wang Songyan, Chao Tao, Yang Ming. Multi Criterion Variable Weight Comprehensive Evaluation Method of Guidance and Control System [J]. Journal of System Simulation, 2018, 30(2): 435-442. |
[7] | Zhang Jianchun, Zeng Yanyang, Xu Wenpeng, Kang Fengju. Improved Hybrid DEVS-based Equipment Modeling Method [J]. Journal of System Simulation, 2018, 30(11): 4123-4131. |
[8] | Liu Yi, Wang Gangqiao, Wu Zhipeng, Fan Zhenqiang, Chen Yongqiang. Scenario Computing for Analysis of Deep Uncertainty Systems [J]. Journal of System Simulation, 2018, 30(10): 3608-3615. |
[9] | Zu Xianghuan, Wang Yinyan, Yang Chuanlei, Du Jianwei, Wang Jialun. Research and Implementation of EGR performance Evaluation for Turbocharged Diesel Engine [J]. Journal of System Simulation, 2017, 29(12): 3075-3081. |
[10] | Zhang Denghui, Chao Tao, Wang Songyan, Ma Ping. Performance Evaluation of Guidance and Control System Based on Improved Latin Hypercube [J]. Journal of System Simulation, 2017, 29(10): 2345-2352. |
[11] | Ma Xiangguo, Liu Tongjuan, Wang Li, Jiang Rongfen. Performance Evaluation of Automated Warehouse Based on Markov Chain [J]. Journal of System Simulation, 2016, 28(7): 1692-1700. |
[12] | Qi Zongfeng, Han Shan, Li Jianxun. Research on Radar Anti-jamming Performance Evaluation Index System Based on Rough Set Theory [J]. Journal of System Simulation, 2016, 28(2): 335-342. |
[13] | Li Fan, Geng Xu, Dong Xiaojie, Hong Zehua. Application of Mutil-level Fuzzy Algorithm in IR Countermeasure Performance Integrated Evaluation [J]. Journal of System Simulation, 2015, 27(9): 2176-2180. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||