Journal of System Simulation ›› 2023, Vol. 35 ›› Issue (12): 2497-2511.doi: 10.16182/j.issn1004731x.joss.22-0793
• Overview • Next Articles
Feng Qiqi1,2(
), Dong Zhiming1(
), Peng Wencheng1, Dai Yi1, Si Bingshan1
Received:2022-07-08
Revised:2022-11-15
Online:2023-12-15
Published:2023-12-12
Contact:
Dong Zhiming
E-mail:594472717@qq.com;dong_zhiming@163.com
CLC Number:
Feng Qiqi, Dong Zhiming, Peng Wencheng, Dai Yi, Si Bingshan. Development of Several Typical Virtual Reality Fusion Technologies[J]. Journal of System Simulation, 2023, 35(12): 2497-2511.
Table 1
Comparison of four virtual reality fusion technologies
| 技术名称 | 起源时间 | 发展进程 | 功能特点 | 目标趋势 |
|---|---|---|---|---|
| DT | 2003年 | 普遍适用性强,多应用于军事、工业制造、城市建设等 | 物理对象实现孪生建模,虚实实体一致同步 | 全部物理对象的数字化 |
| CPS | 2006年 | 从理论指导迈向工程实践,持续聚焦工业领域 | 改变工业运营模式,虚实系统深度集成 | 万物互联 |
| Metaverse | 2021年 (元年) | 初期探索,涉及游戏、娱乐、社交等互联网行业 | 包含现实世界三维镜像和虚拟新生景象,虚实空间边界消融 | 建立人类社会的虚拟生存空间 |
| LVC | 1983年 | 发展成熟,军事领域作战、训练、试验效果显著 | 满足对抗博弈需求,人、装、环境等虚实资源结合互补 | L、V、C互联互通互操作 |
| 1 | 中国电子技术标准化研究院, 树根互联技术有限公司. 数字孪生应用白皮书(2020版)[EB/OL].(2020-11-16)[2022-03-19]. . |
| 2 | 王巍, 刘永生, 廖军, 等. 数字孪生关键技术及体系架构[J]. 邮电设计技术, 2021(8): 10-14. |
| Wang Wei, Liu Yongsheng, Liao Jun, et al. Key Technology and Architecture of Digital Twin[J]. Designing Techniques of Posts and Telecommunications, 2021(8): 10-14. | |
| 3 | Grieves M W. Product Lifecycle Management: The New Paradigm for Enterprises[J]. International Journal of Product Development, 2005, 2(1/2): 71-84. |
| 4 | 张冰, 李欣, 万欣欣. 从数字孪生到数字工程建模仿真迈入新时代[J]. 系统仿真学报, 2019, 31(3): 369-376. |
| Zhang Bing, Li Xin, Wan Xinxin. From Digital Twin to Digital Engineering Modeling and Simulation Entering a New Era[J]. Journal of System Simulation, 2019, 31(3): 369-376. | |
| 5 | Grieves M. Virtually Perfect: Driving Innovative and Lean Products Through Product Lifecycle Management[M]. Cocoa Beach, FL: Space Coast Press, 2011. |
| 6 | Glaessgen E H, Stargel D S. The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, VA, USA: AIAA, 2012: AIAA 2012-1818. |
| 7 | 王鸿庆, 杨雨辰. 数字孪生| 工四100术语 (编号308)[EB/OL]. (2016-05-19)[2022-03-19]. . |
| 8 | 张霖. 关于数字孪生的冷思考及其背后的建模和仿真技术[J]. 系统仿真学报, 2020, 32(4): 前插1-10. |
| 9 | 杨尚文, 周中元, 陆凌云. 数字孪生概念与应用[J]. 指挥信息系统与技术, 2021, 12(5): 38-42. |
| Yang Shangwen, Zhou Zhongyuan, Lu Lingyun. Concept and Application of Digital Twin[J]. Command Information System and Technology, 2021, 12(5): 38-42. | |
| 10 | 陶飞, 马昕, 胡天亮, 等. 数字孪生标准体系[J]. 计算机集成制造系统, 2019, 25(10): 2405-2418. |
| Tao Fei, Ma Xin, Hu Tianliang, et al. Research on Digital Twin Standard System[J]. Computer Integrated Manufacturing Systems, 2019, 25(10): 2405-2418. | |
| 11 | 李欣, 刘秀, 万欣欣. 数字孪生应用及安全发展综述[J]. 系统仿真学报, 2019, 31(3): 385-392. |
| Li Xin, Liu Xiu, Wan Xinxin. Overview of Digital Twins Application and Safe Development[J]. Journal of System Simulation, 2019, 31(3): 385-392. | |
| 12 | 中国移动通信有限公司研究院, 中移物联网有限公司, 深圳华龙迅达信息技术股份有限公司, 等. 数字孪生技术应用白皮书(2021)[EB/OL].(2021-12-09)[2022-03-19]. . |
| 13 | 袁野, 曹伟. 数字孪生技术研究[C]//2021年(第九届)中国水利信息化技术论坛论文集. 济南: 河海大学, 山东水利学会, 山东省水利科学研究院, 2021: 1-4. |
| 14 | 蔡远利, 高鑫, 张渊. 数字孪生技术的概念、方法及应用[C]//第20届中国系统仿真技术及其应用学术年会(20th CCSSTA 2019)论文集. 合肥: 中国自动化学会, 中国系统仿真学会, 2019: 129-133. |
| 15 | 时培昕. 数字孪生的概念、发展形态和意义[J]. 软件和集成电路, 2018(9): 28-33. |
| 16 | 杨林瑶, 陈思远, 王晓, 等. 数字孪生与平行系统:发展现状、对比及展望[J]. 自动化学报, 2019, 45(11): 2001-2031. |
| Yang Linyao, Chen Siyuan, Wang Xiao, et al. Digital Twins and Parallel Systems: State of the Art, Comparisons and Prospect[J]. Acta Automatica Sinica, 2019, 45(11): 2001-2031. | |
| 17 | 聂蓉梅, 周潇雅, 肖进, 等. 数字孪生技术综述分析与发展展望[J]. 宇航总体技术, 2022, 6(1): 1-6. |
| Nie Rongmei, Zhou Xiaoya, Xiao Jin, et al. Analysis and Perspective on Digital Twin Technology[J]. Astronautical Systems Engineering Technology, 2022, 6(1): 1-6. | |
| 18 | 李心悦. 德国为什么成立"工业数字孪生体协会"?[EB/OL]. (2020-10-28)[2022-03-19]. . |
| 19 | 陶飞, 张萌, 程江峰, 等. 数字孪生车间-一种未来车间运行新模式[J]. 计算机集成制造系统, 2017, 23(1): 1-9. |
| Tao Fei, Zhang Meng, Cheng Jiangfeng, et al. Digital Twin Workshop: A New Paradigm for Future Workshop[J]. Computer Integrated Manufacturing Systems, 2017, 23(1): 1-9. | |
| 20 | 陶飞, 张贺, 戚庆林, 等. 数字孪生十问:分析与思考[J]. 计算机集成制造系统, 2020, 26(1): 1-17. |
| Tao Fei, Zhang He, Qi Qinglin, et al. Ten Questions Towards Digital Twin: Analysis and Thinking[J]. Computer Integrated Manufacturing Systems, 2020, 26(1): 1-17. | |
| 21 | 陶飞, 程颖, 程江峰, 等. 数字孪生车间信息物理融合理论与技术[J]. 计算机集成制造系统, 2017, 23(8): 1603-1611. |
| Tao Fei, Cheng Ying, Cheng Jiangfeng, et al. Theories and Technologies for Cyber-physical Fusion in Digital Twin Shop-floor[J]. Computer Integrated Manufacturing Systems, 2017, 23(8): 1603-1611. | |
| 22 | 陶飞, 张贺, 戚庆林, 等. 数字孪生模型构建理论及应用[J]. 计算机集成制造系统, 2021, 27(1): 1-15. |
| Tao Fei, Zhang He, Qi Qinglin, et al. Theory of Digital Twin Modeling and Its Application[J]. Computer Integrated Manufacturing Systems, 2021, 27(1): 1-15. | |
| 23 | 陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25(1): 1-18. |
| Tao Fei, Liu Weiran, Zhang Meng, et al. Five-dimension Digital Twin Model and Its Ten Applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 1-18. | |
| 24 | 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1): 1-18. |
| Tao Fei, Liu Weiran, Liu Jianhua, et al. Digital Twin and Its Potential Application Exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 1-18. | |
| 25 | 张辰源, 陶飞. 数字孪生模型评价指标体系[J]. 计算机集成制造系统, 2021, 27(8): 2171-2186. |
| Zhang Chenyuan, Tao Fei. Evaluation Index System for Digital Twin Model[J]. Computer Integrated Manufacturing Systems, 2021, 27(8): 2171-2186. | |
| 26 | Tao Fei, Qi Qinglin, Wang Lihui, et al. Digital Twins and Cyber-physical Systems Toward Smart Manufacturing and Industry 4.0: Correlation and Comparison[J]. Engineering, 2019, 5(4): 653-661. |
| 27 | 佟林杰, 牛朝文. 基于数字孪生的智慧城市建设研究[J]. 四川行政学院学报, 2021(5): 18-26. |
| Tong Linjie, Niu Chaowen. Research on the Construction of Smart Cities Based on Digital Twin[J]. Journal of Sichuan Administration Institute, 2021(5): 18-26. | |
| 28 | Mohammadi N, Taylor J E. Smart City Digital Twins[C]//2017 IEEE Symposium Series on Computational Intelligence (SSCI). Piscataway, NJ, USA: IEEE, 2017: 1-5. |
| 29 | 王筱卉, 蔡宸青, 宋凯. 数字孪生: 支撑新型智慧城市转型升级[J]. 城乡建设, 2022(6): 51-53. |
| 30 | 毛子骏, 黄膺旭. 数字孪生城市:赋能城市"全周期管理"的新思路[J]. 电子政务, 2021(8): 67-79. |
| 31 | 中国信息物理系统发展论坛. 信息物理系统白皮书(2017)[EB/OL]. (2017-03-01)[2022-03-20]. . |
| 32 | 阴鹏艳. 数字工程! 美空军"一号武器"展示了软件定义武器的数字孪生技术[EB/OL]. (2021-01-26)[2022-03-20]. . |
| 33 | 胡权. 关于CPS与Digital Twin的渊源与对比[EB/OL]. (2017-12-26)[2022-03-20]. . |
| 34 | 中国电子技术标准化研究院. 信息物理系统(CPS)典型应用案例集[M]. 北京: 电子工业出版社, 2019. |
| 35 | Liu Yang, Peng Yu, Wang Bailing, et al. Review on Cyber-physical Systems[J]. IEEE/CAA Journal of Automatica Sinica, 2017, 4(1): 27-40. |
| 36 | Lee E A. Computing Foundations and Practice for Cyber-physical Systems: A Preliminary Report[EB/OL]. (2007-05-21)[2022-03-20]. . |
| 37 | 李仁发, 谢勇, 李蕊, 等. 信息-物理融合系统若干关键问题综述[J]. 计算机研究与发展, 2012, 49(6): 1149-1161. |
| Li Renfa, Xie Yong, Li Rui, et al. Survey of Cyber-physical Systems[J]. Journal of Computer Research and Development, 2012, 49(6): 1149-1161. | |
| 38 | 杨挺, 刘亚闯, 刘宇哲, 等. 信息物理系统技术现状分析与趋势综述[J]. 电子与信息学报, 2021, 43(12): 3393-3406. |
| Yang Ting, Liu Yachuang, Liu Yuzhe, et al. Review on Cyber-physical System: Technology Analysis and Trends[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3393-3406. | |
| 39 | 国家市场监督管理总局, 国家标准化管理委员会. 信息物理系统 术语: [S]. 北京: 中国标准出版社, 2021. |
| State Administration for Market Regulation, Administration Standardization. Cyber-physical Systems-terminology: [S]. Beijing: Standards Press of China, 2021. | |
| 40 | 中国电子技术标准化研究院, 中国信息物理系统发展论坛. 信息物理系统建设指南(2020)[M]. (2020-08-28) [2022-03-20]. . |
| 41 | 胡权. 中国的CPS研究距离美国有多远?[EB/OL]. (2017-10-08)[2022-03-20]. . |
| 42 | 肖红, 程良伦, 张荣跃, 等. 智能制造信息物理系统安全研究[J]. 信息安全研究, 2017, 3(8): 727-735. |
| Xiao Hong, Cheng Lianglun, Zhang Rongyue, et al. Research on Intelligent Manufacturing Information System Security[J]. Journal of Information Security Research, 2017, 3(8): 727-735. | |
| 43 | 刘棣斐, 田洪川, 刘贺贺. 工业CPS技术、架构及应用策略研究[J]. 中兴通讯技术, 2016, 22(5): 17-20. |
| Liu Difei, Tian Hongchuan, Liu Hehe. Technologies, Architecture and Application Strategies of Industrial CPS[J]. ZTE Technology Journal, 2016, 22(5): 17-20. | |
| 44 | 邓苏, 王嵘, 王志飞, 等. 军事信息物理系统架构及动态资源调度稳定性研究[J]. 指挥与控制学报, 2016, 2(4): 309-314. |
| Deng Su, Wang Rong, Wang Zhifei, et al. Architecture of Military Cyber Physical System and Stability Analysis of Dyanmic Resource Scheduling[J]. Journal of Command and Control, 2016, 2(4): 309-314. | |
| 45 | 董志明, 冯琦琦, 王晓路. 军事信息物理系统初探[C]//国际工程科技发展战略高端论坛-新一代人工智能引领下的建模仿真技术暨2019年中国仿真大会论文集. 2019.Dong Zhiming, Feng Qiqi, Wang Xiaolu. On the Military Cyber Physics System[C]//International High-end Forum on Engineering Science and Technology Development Strategy-model Technology and Simulation Technology and 2019 China Simulation Conference. 2019. |
| 46 | 张博. 用于军事赛博物理系统的微能源技术研究现状与发展[J]. 传感器与微系统, 2013, 32(8): 6-10, 17. |
| Zhang Bo. Research Status and Development of Micro Power Sources Technologies for Military Cyber Physical Systems[J]. Transducer and Microsystem Technologies, 2013, 32(8): 6-10, 17. | |
| 47 | 金宏, 余跃, 吴正午, 等. 面向远程精确打击服务的信息物理系统[C]//2014第二届中国指挥控制大会论文集(上). 北京: 中国指挥与控制学会, 2014: 533-536. |
| 48 | 王刚, 张含, 孟庆微. 赛博物理系统对武器装备建设的影响[J]. 空军工程大学学报, 2015, 15(1): 41-43. |
| Wang Gang, Zhang Han, Meng Qingwei. Influence of Cyber Physical System on Weapon Equipment Construction[J]. Journal of Air Force Engineering University, 2015, 15(1): 41-43. | |
| 49 | 王运武, 王永忠, 王藤藤, 等. 元宇宙的起源、发展及教育意蕴[J]. 中国医学教育技术, 2022, 36(2): 121-129, 133. |
| Wang Yunwu, Wang Yongzhong, Wang Tengteng, et al. The Origin, Development and Educational Implication of the Metaverse[J]. China Medical Education Technology, 2022, 36(2): 121-129, 133. | |
| 50 | 王海龙, 李阳春, 李欲晓. 元宇宙发展演变及安全风险研究[J]. 网络与信息安全学报, 2022, 8(2): 132-138. |
| Wang Hailong, Li Yangchun, Li Yuxiao. Research on Evolution and Security Risk of Metaverse[J]. Chinese Journal of Network and Information Security, 2022, 8(2): 132-138. | |
| 51 | 张洪忠, 斗维红, 任吴炯. 元宇宙: 具身传播的场景想象[J]. 新闻界, 2022(1): 76-84. |
| Zhang Hongzhong, Dou Weihong, Ren Wujiong. Metaverse: Scene Imagery of Embodied Communication[J]. Journalism and Mass Communication, 2022(1): 76-84. | |
| 52 | Zhang Liangjie. MRA: Metaverse Reference Architecture[C]//Internet of Things-ICIOT 2021. Cham: Springer International Publishing, 2022: 102-120. |
| 53 | 谭平. 元宇宙: 下一代互联网[EB/OL]. (2021-10-26)[2022-04-22]. . |
| 54 | 方凌智, 沈煌南. 技术和文明的变迁-元宇宙的概念研究[J]. 产业经济评论, 2022(1): 5-19. |
| Fang Lingzhi, Shen Huangnan. Conceptualizing Metaverse: A Perspective From Technology and Civilization[J]. Review of Industrial Economics, 2022(1): 5-19. | |
| 55 | 杨丹辉. 元宇宙的当下与未来[EB/OL]. (2022-04-20)[2022-04-22]. . |
| 56 | 方军. 元宇宙的起源、发展现状及未来展望[EB/OL]. (2022-03-28)[2022-04-22]. . |
| 57 | 清华大学. 元宇宙发展研究报告2021[EB/OL]. (2021-10-31)[2022-04-22]. . |
| 58 | 佚名. 到底什么才是"元宇宙"?[J]. 华东科技, 2021(9): 78-79. |
| 59 | Stokel-Walker C. Facebook is Now Meta-but Why, and What Even is the Metaverse?[J]. New Scientist, 2021, 252(3359): 12. |
| 60 | 闫学功. 字节跳动悄咪咪凑齐元宇宙"三件套"[EB/OL]. (2022-02-15)[2022-04-22]. . |
| 61 | 何晓骁, 王秉涵. 美军"实况-虚拟-构造"仿真技术发展及应用研究[J]. 航空兵器, 2021, 28(6): 14-18. |
| He Xiaoxiao, Wang Binghan. Research on Development and Application of LVC Simulation Technology in US[J]. Aero Weaponry, 2021, 28(6): 14-18. | |
| 62 | 周进登, 宋健, 刘影, 等. 美军LVC建设梳理及对我军仿真建设的启发[J]. 网信军民融合, 2020(8): 45-48. |
| 63 | 张昱, 张明智, 胡晓峰. 面向LVC训练的多系统互联技术综述[J]. 系统仿真学报, 2013, 25(11): 2515-2521. |
| Zhang Yu, Zhang Mingzhi, Hu Xiaofeng. On Multi-system Integration Technology Oriented to LVC Training[J]. Journal of System Simulation, 2013, 25(11): 2515-2521. | |
| 64 | 冯琦琦, 蔡卓函, 先大蓉. 军用LVC仿真技术的发展研究[J]. 价值工程, 2020, 39(27): 176-179. |
| Feng Qiqi, Cai Zhuohan, Xian Darong. Development of Military LVC Simulation Technology[J]. Value Engineering, 2020, 39(27): 176-179. | |
| 65 | 白爽, 洪俊. 美军面向LVC联合训练的技术发展[J]. 指挥控制与仿真, 2020, 42(5): 135-140. |
| Bai Shuang, Hong Jun. Development of U.S. LVC Joint Training Technology[J]. Command Control & Simulation, 2020, 42(5): 135-140. | |
| 66 | 黄越平, 蔡旭红, 徐建军, 等. 多靶场联合战试训体系结构研究[J]. 航天电子对抗, 2016, 32(2): 18-21. |
| Huang Yueping, Cai Xuhong, Xu Jianjun, et al. Research on the Architecture of Multi Range Joint Operation Test and Training[J]. Aerospace Electronic Warfare, 2016, 32(2): 18-21. | |
| 67 | 许霄. 武器装备综合仿真试验环境关键技术研究[D]. 长沙: 国防科学技术大学, 2013. |
| Xu Xiao. Research on Key Technologies of Synthetic Simulation Test Environment for Weapon System of Systems[D]. Changsha: National University of Defense Technology, 2013. | |
| 68 | 张光宇. 分布虚拟试验系统运行支撑体系结构研究[D]. 西安: 西北工业大学, 2007. |
| 69 | 赵雯, 廖馨, 代坤, 等. 虚拟试验验证技术发展思路研究[J]. 计算机测量与控制, 2009, 17(3): 437-439. |
| Zhao Wen, Liao Xin, Dai Kun, et al. Development Research on Virtual Test and Evaluation Technology[J]. Computer Measurement & Control, 2009, 17(3): 437-439. | |
| 70 | 王献鹏. 试验训练体系结构中间件开发[D]. 哈尔滨: 哈尔滨工业大学, 2012. |
| Wang Xianpeng. Development of Test and Training Architecture Middleware[D]. Harbin: Harbin Institute of Technology, 2012. | |
| 71 | 蔡继红, 卿杜政, 谢宝娣. 支持LVC互操作的分布式联合仿真技术研究[J]. 系统仿真学报, 2015, 27(1): 93-97. |
| Cai Jihong, Duzheng Qing, Xie Baodi. Research of Joint Simulation Platform Supporting Interoperability of LVC[J]. Journal of System Simulation, 2015, 27(1): 93-97. | |
| 72 | 郭齐胜, 董志明. 试验训练一体化仿真支撑平台设计研究[J]. 计算机仿真, 2020, 37(9): 1-5. |
| Guo Qisheng, Dong Zhiming. Research on Design of Test and Training Integrated Simulation Supporting Platform[J]. Computer Simulation, 2020, 37(9): 1-5. | |
| 73 | 董志明, 郭齐胜. 试验训练一体化仿真支撑技术研究[J]. 计算机仿真, 2021, 38(2): 1-3, 23. |
| Dong Zhiming, Guo Qisheng. Research on Support Technology of Test and Training Integrated Simulation[J]. Computer Simulation, 2021, 38(2): 1-3, 23. | |
| 74 | 涂亿彬. LVC联合试验体系结构及关键技术研究[D]. 长沙: 国防科学技术大学, 2016. |
| Tu Yibin. Research on LVC Joint Test Architecture and Key Technology[D]. Changsha: National University of Defense Technology, 2016. | |
| 75 | 冯芒. 聚焦空、天、赛博联合演训, “红旗 20-1”军演增强美军杀伤力[EB/OL]. (2020-04-24)[2022-05-01]. . |
| 76 | 戴钰超. 美国海军启动“大规模演习2021”测试新质作战概念[EB/OL]. (2021-08-17)[2022-05-01]. . |
| 77 | 刘逢安. 从“训练打靶”向“实战检验”转变-“火力-2015·山丹”陆军防空兵部队跨区基地化实兵实弹演习侧记[J]. 现代军事, 2015(8): 24-31. |
| 78 | 李京燕, 韩升. 虚实融合与新一代信息技术[C]//第十七届中国CAE工程分析技术年会论文集. 海口: 中国力学学会产学研工作委员会, 中国航空学会结构与强度分会, 中国塑料加工工业协会注塑制品专业委员会, 陕西省国防科技工业信息化协会, 2021: 38-43. |
| [1] | Lu Houjun, Zhu Yifei, Rong Yanping, Zhang Wanghui. Digital Twin Modeling Method for Bulk Cargo Stacks Based on 2D LiDAR [J]. Journal of System Simulation, 2025, 37(9): 2269-2286. |
| [2] | Liu Yongkui, Yang Kang, Tuo Benben, Pan Yaduo, Wang Xinyu, Wang Yihan, Gong Yongqian, Zhang Lin, Wang Lihui, Lin Tingyu, Zi Bin, Li Yuan, You Wei, Xu Xun. Digital Twinned Industrial Robot: Conceptual Framework, Key Technologies, and Case Study [J]. Journal of System Simulation, 2025, 37(7): 1723-1752. |
| [3] | Liu Tao, Li Hanxi, Yin Yong, Liu Jialun. Research Review of Intelligent Navigation Simulation Technology and Its Applications [J]. Journal of System Simulation, 2025, 37(7): 1684-1709. |
| [4] | Chen Qinghua, Liang Zuoyou, Guan Weijuan, Ji Jiadong, Liu Ping. Construction Method of Digital Twin System for High-low Temperature Test Chamber [J]. Journal of System Simulation, 2025, 37(6): 1400-1411. |
| [5] | Zhang Wenjia, Zhang Heming. Research on Grey-box Modeling Method of Digital Twins for Cantilever Structure [J]. Journal of System Simulation, 2025, 37(5): 1158-1168. |
| [6] | Zhang Huimai, Hu Xiaoya, Zhou Chunjie. Digital Twin Framework for the Generation and Optimization of Security Policies for TSN Industrial Control Systems [J]. Journal of System Simulation, 2025, 37(4): 861-874. |
| [7] | Jiang Lun, Wang Dajiang, Sun Wenlei, Bao Shenghui, Liu Han, Chang Saike. Research on Transformer Fault Diagnosis Method Based on Digital Twin [J]. Journal of System Simulation, 2025, 37(3): 775-790. |
| [8] | Hu Tianxiang, Ye Hui, Yang Xiaofei. Construction of a Digital Twin-based Ship Manufacturing Workshop Monitoring System [J]. Journal of System Simulation, 2025, 37(2): 517-528. |
| [9] | Zheng Jiayu, Mai Zhuxue, Chen Zheyi. Optimization of Service Caching and Computation Offloading in Digital Twin Cloud-edge Networks [J]. Journal of System Simulation, 2025, 37(11): 2741-2753. |
| [10] | Zhang Xiyang, Lin Xusheng, Zhou Rui, Hu Yi. Research on the Digital Twin Architecture and Application of CNC System [J]. Journal of System Simulation, 2025, 37(1): 183-198. |
| [11] | Wu Qinghui, BaoYaqing , Zhao Zhongxin, Huang Xu, Wei Yuchen. Research and Implementation of Digital Twin System for Mine Drainage Monitoring [J]. Journal of System Simulation, 2025, 37(1): 199-210. |
| [12] | Zhao Baiting, Shi Jianguo, Jia Xiaofen. Research on Digital Twin System of Rockshaft Hoist [J]. Journal of System Simulation, 2024, 36(9): 2054-2064. |
| [13] | Li Dongxue, Liu Yan, Shen Boyao, Jing Yongteng, Ma Qiang, Liu Ran. Carbon Footprint Analysis and Low-carbon Optimization Method Simulation Study of Power Transformer Based on Digital Twin Technology [J]. Journal of System Simulation, 2024, 36(9): 2075-2085. |
| [14] | Xu Jian, Liu Gaofeng, Zhao Yijian, Zheng Zili, Yan Huanying. The Synchronous Grasping Method of Virtual-real Assembly Robot Based on Digital Twin [J]. Journal of System Simulation, 2024, 36(9): 2181-2192. |
| [15] | Cao Yu, Li Jie, Wang Fang, Liu Zhixiang, Wang Xueliang. Digital Twin Method of Stress Field of Deep Submersible Spherical Shell Based on Simulation Database [J]. Journal of System Simulation, 2024, 36(8): 1764-1779. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||