Journal of System Simulation ›› 2023, Vol. 35 ›› Issue (6): 1308-1321.doi: 10.16182/j.issn1004731x.joss.22-0216
• Papers • Previous Articles Next Articles
Chunhong Liu1(), Song Wang1(
), Fupan Wang1, Wensheng Tang1, Yunqiang Pei1, Dongsheng Tian1, Yadong Wu2
Received:
2022-03-15
Revised:
2022-05-25
Online:
2023-06-29
Published:
2023-06-20
Contact:
Song Wang
E-mail:2501649391@qq.com;wangsong@swust.edu.cn
CLC Number:
Chunhong Liu, Song Wang, Fupan Wang, Wensheng Tang, Yunqiang Pei, Dongsheng Tian, Yadong Wu. AR-assisted Sign Language Letter Recognition Method Based on Improved MobileNet Network[J]. Journal of System Simulation, 2023, 35(6): 1308-1321.
Table 1
MS-MobileNet parameter settings
卷积类型 | Filter Shape | Stride | Output Size | 卷积类型 | Filter Shape | Stride | Output Size |
---|---|---|---|---|---|---|---|
MS-Conv | 1×1、3×3、5×5 | 1 | 224×224×48 | Dw Conv 5 | 3×3×256 | 1 | 28×28×256 |
Dw Conv 1 | 3×3×48 | 2 | 112×112×48 | Pw Conv 5 | 1×1×256×256 | 1 | 28×28×256 |
Pw Conv 1 | 1×1×48×64 | 1 | 112×112×64 | Dw Conv 6 | 3×3×256 | 2 | 14×14×256 |
Dw Conv 2 | 3×3×64 | 2 | 56×56×64 | Pw Conv 6 | 1×1×256×512 | 1 | 14×14×512 |
Pw Conv 2 | 1×1×64×128 | 1 | 56×56×128 | Dw Conv 7 | 3×3×512 | 2 | 7×7×512 |
Dw Conv 3 | 3×3×128 | 1 | 56×56×128 | Pw Conv 7 | 1×1×512×1024 | 1 | 7×7×1024 |
Pw Conv 3 | 1×1×128×128 | 1 | 56×56×128 | Dw Conv 8 | 3×3×1024 | 1 | 7×7×1024 |
Dw Conv 4 | 3×3×128 | 2 | 28×28×128 | Pw Conv 8 | 1×1×1024×1024 | 1 | 7×7×1024 |
Pw Conv 4 | 1×1×128×256 | 1 | 28×28×256 |
Table 4
Performance comparison of different models on ASL-M dataset
模型 | 准确率/% | 计算量/百万 | 参数量/百万 |
---|---|---|---|
AlexNet | 95.21 | 714 | 61.10 |
GoogleNet | 90.26 | 1 504 | 6.62 |
ResNet50 | 94.32 | 4 111 | 25.56 |
MobileNetV1 | 95.68 | 575 | 4.21 |
MobileNetV2 | 95.10 | 314 | 3.50 |
MobileNetV3 | 93.47 | 312 | 3.52 |
ShuffleNet | 92.39 | 148 | 2.28 |
SqueezeNet | 95.06 | 823 | 1.25 |
EfficientNet | 96.37 | 399 | 5.30 |
本文 | 98.26 | 580 | 4.23 |
Table 6
Recognition performance indicators of different categories
字母 | 精确度 | 召回率 | F1-score | 字母 | 精确度 | 召回率 | F1-score |
---|---|---|---|---|---|---|---|
A | 0.99 | 0.99 | 1.00 | N | 0.95 | 0.97 | 0.96 |
B | 1.00 | 1.00 | 1.00 | O | 1.00 | 1.00 | 0.99 |
C | 1.00 | 0.99 | 0.99 | P | 0.96 | 0.98 | 0.98 |
D | 1.00 | 0.98 | 0.99 | Q | 0.98 | 0.99 | 0.98 |
E | 0.97 | 0.97 | 0.98 | R | 0.98 | 1.00 | 0.99 |
F | 1.00 | 1.00 | 1.00 | S | 1.00 | 1.00 | 1.00 |
G | 0.97 | 0.99 | 0.99 | T | 0.98 | 0.98 | 0.98 |
H | 0.96 | 0.95 | 0.95 | U | 1.00 | 0.99 | 1.00 |
I | 0.97 | 0.99 | 0.98 | V | 1.00 | 1.00 | 1.00 |
K | 0.96 | 0.94 | 0.96 | W | 1.00 | 1.00 | 1.00 |
L | 1.00 | 1.00 | 1.00 | X | 0.97 | 0.98 | 0.98 |
M | 0.94 | 0.92 | 0.96 | Y | 1.00 | 1.00 | 1.00 |
1 | 郝子煜, 阿里甫·库尔班, 李晓红, 等. 基于CapsNet的中国手指语识别[J]. 计算机应用研究, 2019, 36(10): 3157-3159. |
Hao Ziyu, Kuerban Alifu, Li Xiaohong, et al. Chinese Finger Language Recognition Using CapsNet[J]. Application Research of Computers, 2019, 36(10): 3157-3159. | |
2 | 杨淑莹, 赵敏, 郭杨杨, 等. 基于改进的EfficientDet的手语识别算法[J]. 微电子学与计算机, 2022, 39(2): 84-91. |
Yang Shuying, Zhao Min, Guo Yangyang, et al. Sign Language Recognition Algorithm Based on Improved EfficientDet[J]. Microelectronics & Computer, 2022, 39(2): 84-91. | |
3 | Köpüklü O, Gunduz A, Kose N, et al. Real-time Hand Gesture Detection and Classification Using Convolutional Neural Networks[C]//2019 14th IEEE International Conference on Automatic Face & Gesture Recognition(FG 2019). Piscataway, NJ, USA: IEEE, 2019: 1-8. |
4 | Amaro N M, Piñero Pérez P Y, Montesinos D F P, et al. Tendencies in Augmented Reality[M]//Piñero Pérez P Y, Bello Pérez R E, Kacprzyk J. Artificial Intelligence in Project Management and Making Decisions. Cham: Springer International Publishing, 2022: 345-362. |
5 | 梁欢, 陈一民, 李德旭, 等. 面向移动增强现实的手势交互方法[J]. 微型电脑应用, 2018, 34(5): 9-13. |
Liang Huan, Chen Yimin, Li Dexu, et al. The Method of Hand Gesture Interaction Based on Depth Learning and Hidden Markov Model[J]. Microcomputer Applications, 2018, 34(5): 9-13. | |
6 | 裴云强, 吴亚东, 王赋攀, 等. 基于改进L-K光流的WebAR信息可视分析方法[J]. 图学学报, 2020, 41(6): 962-969. |
Pei Yunqiang, Wu Yadong, Wang Fupan, et al. IV LKWA: An Information Visual Analysis Tool with Advanced L-K Optical Flow Based WebAR[J]. Journal of Graphics, 2020, 41(6): 962-969. | |
7 | Qiao Xiuquan, Ren Pei, Guoshun Nan, et al. Mobile Web Augmented Reality in 5G and Beyond: Challenges, Opportunities, and Future Directions[J]. China Communications, 2019, 16(9): 141-154. |
8 | Lian K Y, Chiu C C, Hong Yongjie, et al. Wearable Armband for Real Time Hand Gesture Recognition[C]//2017 IEEE International Conference on Systems, Man, and Cybernetics(SMC). Piscataway, NJ, USA: IEEE, 2017: 2992-2995. |
9 | 蔡兴泉, 郭天航, 臧坤, 等. 基于无线数据手套的手势识别方法研究[J]. 系统仿真学报, 2014, 26(1): 72-75, 84. |
Cai Xingquan, Guo Tianhang, Zang Kun, et al. Gesture Recognition Method Based on Wireless Data Glove[J]. Journal of System Simulation, 2014, 26(1): 72-75, 84. | |
10 | Tarvekar M P. Hand Gesture Recognition System for Touch-less Car Interface Using Multiclass Support Vector Machine[C]//2018 Second International Conference on Intelligent Computing and Control Systems(ICICCS). Piscataway, NJ, USA: IEEE, 2018: 1929-1932. |
11 | Barbhuiya A A, Karsh R K, Dutta S. AlexNet-CNN Based Feature Extraction and Classification of Multiclass ASL Hand Gestures[C]//Proceeding of Fifth International Conference on Microelectronics, Computing and Communication Systems. Singapore: Springer Singapore, 2021: 77-89. |
12 | Hamid M F A, Zaman F H K. Hand Gesture Recognition Using Movidius Neural Compute Stick[C]//2019 IEEE 9th International Conference on System Engineering and Technology(ICSET). Piscataway, NJ, USA: IEEE, 2019: 510-514. |
13 | Jain A, Sethi A, Vishwakarma D K, et al. Ensembled Neural Network for Static Hand Gesture Recognition[C]//2021 12th International Conference on Computing Communication and Networking Technologies(ICCCNT). Piscataway, NJ, USA: IEEE, 2021: 1-5. |
14 | Howard A G, Zhu Menglong, Chen Bo, et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications[EB/OL]. (2017-04-17)[2022-02-26]. . |
15 | Liu Peiyu, Guo Jian, Lu Jiemin, et al. An sEMG Gesture Recognition Algorithm Based on Improved MobileNet[C]//2021 6th International Conference on Computational Intelligence and Applications(ICCIA). Piscataway, NJ, USA: IEEE, 2021: 169-173. |
16 | He Wangpeng, Liao Nannan, Liu Wei, et al. An Ultra-high Speed Gesture Recognition Algorithm Based on MobileNetV2[C]//Neural Computing for Advanced Applications. Singapore: Springer Singapore, 2021: 590-602. |
17 | Qian Siying, Ning Chenran, Hu Yuepeng. MobileNetV3 for Image Classification[C]//2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering(ICBAIE). Piscataway, NJ, USA: IEEE, 2021: 490-497. |
18 | Gupta N. Sign Language Recognition Using Diverse Deep Learning Models[C]//International Conference on Artificial Intelligence and Sustainable Engineering. Singapore: Springer Singapore, 2022: 463-475. |
19 | Zhang Kang, Lan Shengchang, Zhang Guiyuan. On the Effect of Training Convolution Neural Network for Millimeter-wave Radar-based Hand Gesture Recognition[J]. Sensors, 2021, 21(1): 259. |
20 | Qiang Baohua, Zhai Yijie, Zhou Mingliang, et al. SqueezeNet and Fusion Network-based Accurate Fast Fully Convolutional Network for Hand Detection and Gesture Recognition[J]. IEEE Access, 2021, 9: 77661-77674. |
21 | Gu Lingyun, Zhang Lin, Wang Zhaokui. Hierarchical Attention-based Astronaut Gesture Recognition: A Dataset and CNN Model[J]. IEEE Access, 2020, 8: 68787-68798. |
22 | Antoshchuk S, Kovalenko M, Sieck J. Gesture Recognition-based Human-computer Interaction Interface for Multimedia Applications[M]//Jat D S, Sieck J, Muyingi H N N, et al. Digitisation of Culture: Namibian and International Perspectives. Singapore: Springer Singapore, 2018: 269-286. |
23 | Xiao Mengting, Feng Zhiquan, Yang Xiaohui, et al. Multimodal Interaction Design and Application in Augmented Reality for Chemical Experiment[J]. Virtual Reality & Intelligent Hardware, 2020, 2(4): 291-304. |
24 | Yusnita L, Hadisukmana N, Wahyu R B, et al. Implementation of Real-time Static Hand Gesture Recognition Using Artificial Neural Network[C]//2017 4th International Conference on Computer Applications and Information Processing Technology(CAIPT). Piscataway, NJ, USA: IEEE, 2017: 1-6. |
25 | Otsu N. A Threshold Selection Method from Gray-level Histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66. |
26 | 刘文达. 基于单目摄像头的静态手势识别方法研究[D]. 武汉: 湖北工业大学, 2020. |
Liu Wenda. Research of Static Gesture Recognition Methods Based on Monocular Camera[D]. Wuhan: Hubei University of Technology, 2020. | |
27 | 景雨, 祁瑞华, 刘建鑫, 等. 基于改进多尺度深度卷积网络的手势识别算法[J]. 计算机科学, 2020, 47(6): 180-183. |
Jing Yu, Qi Ruihua, Liu Jianxin, et al. Gesture Recognition Algorithm Based on Improved Multiscale Deep Convolutional Neural Network[J]. Computer Science, 2020, 47(6): 180-183. | |
28 | 蒋昂波, 王维维. ReLU激活函数优化研究[J]. 传感器与微系统, 2018, 37(2): 50-52. |
Jiang Angbo, Wang Weiwei. Research on Optimization of ReLU Activation Function[J]. Transducer and Microsystem Technologies, 2018, 37(2): 50-52. | |
29 | 史文策, 许江宁, 林恩凡. 陀螺仪的发展与展望[J]. 导航定位学报, 2021, 9(3): 8-12. |
Shi Wence, Xu Jiangning, Lin Enfan. Development and Prospect of Gyroscope[J]. Journal of Navigation and Positioning, 2021, 9(3): 8-12. | |
30 | Pisharady P K, Vadakkepat P, Loh A P. Attention Based Detection and Recognition of Hand Postures Against Complex Backgrounds[J]. International Journal of Computer Vision, 2013, 101(3): 403-419. |
31 | Memo A, Minto L, Zanuttigh P. Exploiting Silhouette Descriptors and Synthetic Data for Hand Gesture Recognition[C]//Smart Tools and Apps for Graphics-Eurographics Italian Chapter Conference. The Eurographics Association, 2015. |
32 | Memo A, Zanuttigh P. Head-mounted Gesture Controlled Interface for Human-computer Interaction[J]. Multimedia Tools and Applications, 2018, 77(1): 27-53. |
33 | O'Brien H L, Cairns P, Hall M. A Practical Approach to Measuring User Engagement with the Refined User Engagement Scale(UES) and New UES Short Form[J]. International Journal of Human-Computer Studies, 2018, 112: 28-39. |
[1] | Feng Xiao, Zhang Hui, Zhou Rui, Qiao Lu, Wei Dong, Li Dandan, Zhang Yuyao, Zheng Guoqing. Variety Recognition Based on Deep Learning and Double-Sided Characteristics of Maize Kernel [J]. Journal of System Simulation, 2021, 33(12): 2983-2991. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||