Journal of System Simulation ›› 2022, Vol. 34 ›› Issue (09): 1956-1967.doi: 10.16182/j.issn1004731x.joss.21-0377
• Modeling Theory and Methodology • Next Articles
Wei Zhou(), Yuxiang Liu(), Guangping Liao, Xin Ma
Received:
2021-04-28
Revised:
2021-07-08
Online:
2022-09-18
Published:
2022-09-23
Contact:
Yuxiang Liu
E-mail:zhou_wei@xtu.edu.cn;494172184@qq.com
CLC Number:
Wei Zhou, Yuxiang Liu, Guangping Liao, Xin Ma. Siamese Object Tracking Algorithm Combined with the Intersection over Union Loss[J]. Journal of System Simulation, 2022, 34(09): 1956-1967.
[1] | 张荣, 李伟平, 莫同, 等. 深度学习研究综述[J]. 信息与控制, 2018, 47(4): 385-397,410. |
Zhang Rong, Li Weiping, Mo Tong, et al. Review of Deep Learning[J]. Information and Control, 2018, 47(4): 385-397,410. | |
[2] | 侯志强, 戴铂, 胡丹, 等. 基于感知深度神经网络的视觉跟踪[J]. 电子与信息学报, 2016, 38(7): 1616-1623. |
Hou Zhiqiang, Dai Bo, Hu Dan, et al. Robust Visual Tracking via Perceptive Deep Neural Network[J]. Jounal of Electronics & Information Technology, 2016, 38(7): 1616-1623. | |
[3] | 李大湘, 张振. 基于改进U-Net视网膜血管图像分割算法[J]. 光学学报, 2020, 40(10): 58-66. |
Li Daxiang, Zhang Zhen. Improved U-Net Segmentation Algorithm for the Retinal Blood Vessel Images[J]. Acta Optica Sinica, 2020, 40(10): 58-66. | |
[4] | 郭智, 宋萍, 张义, 等. 基于深度卷积神经网络的遥感图像飞机目标检测方法[J]. 电子与信息学报, 2018, 40(11): 2684-2690. |
Guo Zhi, Song Ping, Zhang Yi, et al. Aircraft Detection Method Based on Deep Convolutional Neural Network for Remote Sensing Images[J]. Jounal of Electronics &Information Technology, 2018, 40(11): 2684-2690. | |
[5] | Tao R, Gavves E, Smeulders A W M. Siamese Instance Search for Tracking[C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016: 1420-1429. |
[6] | Bertinetto L, Valmadre J, Henriques J F, et al. Fully-convolutional Siamese Networks for Object Tracking[C]// European Conference on Computer Vision.Amsterdam, Netherlands: Springer, 2016: 850-865. |
[7] | Li B, Yan J, Wu W, et al. High Performance Visual Tracking with Siamese Region Proposal Network[C]//IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 8971-8980. |
[8] | Ren S, He K, Girshick R, et al. Faster R-Cnn: Towards Real-time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 2016, 39(6): 1137-1149. |
[9] | Guo Q, Feng W, Zhou C, et al. Learning Dynamic Siamese Network for Visual Object Tracking[C]// IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017: 1763-1771. |
[10] | Zhu Z, Wang Q, Li B, et al. Distractor-Aware Siamese Networks for Visual Object Tracking[C]// European Conference on Computer Vision(ECCV). Munich, Germany: Springer, 2018: 101-117. |
[11] | Yu J, Jiang Y, Wang Z, et al. Unitbox: An Advanced Object Detection Network[C]// 24th ACM International Conference on Multimedia. Amsterdam, Netherlands:ArXiv e-prints, 2016: 516-520. |
[12] | Rezatofighi H, Tsoi N, Gwak J Y, et al. General-lzed Intersection Over Union: A Metric and a Loss for Bounding Box Regression[C]// IEEE Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE, 2019: 658-666. |
[13] | Wu Y, Lim J, Yang M H. Online Object Tracking: A Benchmark[C]// IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA: IEEE, 2013: 2411-2418. |
[14] | Wu Y, Lim J, Yang M H. Object Tracking Benchmark[J].IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 2015, 37(9): 1834-1848. |
[15] | Krizhevsky A, Sutskever I, Hinton G E. Imagenet Classification with Deep Convolutional Neural Networks[J]. Communications of the ACM (S0001-0782), 2017, 60(6): 84-90. |
[16] | Tychsen-Smith L, Petersson L. Improving Object Localization with Fitness Nms and Bounded Iou Loss[C]// IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 6877-6885. |
[17] | Li B, Wu W, Wang Q, et al. Siamrpn++: Evolution of Siamese Visual Tracking with Very Deep Net-Works[C]// IEEE Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE, 2019: 4282-4291. |
[18] | Zheng Z, Wang P, Liu W, et al. Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression[C]//AAAI Conference on Artificial Intelligence. New York, USA: ArXiv e-prints, 2020: 12993-13000. |
[19] | Huang L, Zhao X, Huang K. Got-10k: A Large High-diversity Benchmark for Generic Object Tracking in the Wild[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 2019, 43(5): 1562-1577. |
[20] | Real E, Shlens J, Mazzocchi S, et al. Youtube-Boundingboxes: A Large High-precision Human-Annotated Data Set for Object Detection in Video[C]// IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017: 5296-5305. |
[21] | Bertinetto L, Valmadre J, Golodetz S, et al. Staple: Complementary Learners for Real-time Tracking[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016: 1401-1409. |
[22] | Henriques J F, Caseiro R, Martins P, et al. High-speed Tracking with Kernelized Correlation Filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 2014, 37(3): 583-596. |
[23] | Lukezic A, Vojir T, Zajc L C, et al. Discriminative Correlation Filter with Channel and Spatial Reliability[C]// IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017: 6309-6318. |
[24] | Li F, Tian C, Zuo W, et al. Learning Spatial-Temporal Regularized Correlation Filters for Visual Tracking[C]//IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 4904-4913. |
[1] | Sixian Zhang, Yi Yang, Meng Zhang, Pengbo Mi. An Efficient Tracker via Multi-feature Adaptive Correlation Filter [J]. Journal of System Simulation, 2022, 34(8): 1864-1873. |
[2] | Bingan Yuan, Mingen Zhong, Jingxin Ni. Research on Visual Inspection Algorithm of Crimping Appearance Defects for Wiring Harness Terminals [J]. Journal of System Simulation, 2022, 34(5): 1152-1159. |
[3] | Dinghui Wu, Tongrui Zhang, Xiuli Zhang. Job Shop Rescheduling Under Recessive Disturbance Based on Digital Twin [J]. Journal of System Simulation, 2022, 34(3): 573-583. |
[4] | Li Qi, Mo Hanlin, Wang Xiangdong, Li Hua. Multiple Object Tracking and Kinematic Simulation for Short Track Speed Skating [J]. Journal of System Simulation, 2021, 33(5): 1039-1050. |
[5] | Feng Xiao, Zhang Hui, Zhou Rui, Qiao Lu, Wei Dong, Li Dandan, Zhang Yuyao, Zheng Guoqing. Variety Recognition Based on Deep Learning and Double-Sided Characteristics of Maize Kernel [J]. Journal of System Simulation, 2021, 33(12): 2983-2991. |
[6] | Zhang Liang, Hao Kaifeng. Matching between MAC Address and Object Based on RSSI Change Sequence [J]. Journal of System Simulation, 2020, 32(1): 113-121. |
[7] | Wu Yunpu, Jin Weidong, Ren Junxiao. Fault Identification of High-Speed Train Bogie Based on Siamese Convolutional Neural Network [J]. Journal of System Simulation, 2019, 31(11): 2562-2568. |
[8] | Zhang Qing, Zou Xiangjun, Lin Guichao, Sun Yanhui. Image Feature Extraction and Online Grading Method for Weight and Shape of Strawberry [J]. Journal of System Simulation, 2019, 31(1): 7-9. |
[9] | Li Ju, Cao Mingwei, Yu Ye, XiaYu, Zhou Lifan. An Anti-occlusion Adaptive Particle Filtering Algorithm [J]. Journal of System Simulation, 2018, 30(9): 3552-3557. |
[10] | Jiang Mingxin, Pan Zhigeng, WangLanfang, Hu Taoxin. Visual Object Tracking Algorithm Based on Deep Denoising Autoencoder over RGB-D Data [J]. Journal of System Simulation, 2018, 30(11): 4276-4283. |
[11] | Yang Jiabo, Yang Gang, Yang Meng. Augmented Reality System Based on Depth Image Segmentation and Object Tracking [J]. Journal of System Simulation, 2017, 29(11): 2788-2795. |
[12] | Niu Weihua, Liang Guishu, Zhao Peng. Fault Diagnosis Model of Circuit Breaker Based on Sparse Representation and M-ELM [J]. Journal of System Simulation, 2017, 29(11): 2828-2839. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||