[1] 杨壮壮, 徐建源, 李斌, 等. 高压真空断路器机械状态监测系统研制[J]. 高压电器, 2013, 49(8): 26-34. Yang Zhuangzhuang, Xu Jianyuan, Li Bin, et al.Design of monitoring system for mechanical status of high voltage vacuum circuit breaker[J]. High Voltage Apparatus, 2013, 49(8): 26-34. [2] 赵书涛, 张佩, 申路, 等. 高压断路器振声联合故障诊断方法[J]. 电工技术学报, 2014, 29(7): 216-221. Zhao Shutao, Zhang Pei, Shen Lu, et al.Vibration and acoustic joint mechanical fault diagnosis method of high voltage circuit breakers[J]. Transaction of China Electrotechnical Society, 2014, 29(7): 216-221. [3] 缪希仁, 吴晓梅, 石敦义, 等. 采用HHT振动分析的低压断路器合闸同期辨识[J]. 电工技术学报, 2014, 29(11): 154-161. Miao Xiren, Wu Xiaomei, Shi Dunyi, et al.Switching synchronism identification of low voltage circuit breaker utilizing HHT analysis to vibration signal[J]. Transaction of China Electrotechnical Society, 2014, 29(11): 154-161. [4] 常广, 王毅, 王玮. 采用振动信号零相位滤波时频熵的高压断路器机械故障诊断[J]. 中国电机工程学报, 2013, 33(3): 155-162. Chang Guang, Wang Yi, Wang Wei.Mechanical fault diagnosis of high voltage circuit breakers utilizing zero-phase filter time-frequency entropy of vibration signal[J]. Proceedings of the CSEE, 2013, 33(3): 155-162. [5] Ni Jianjun, Zhang Chuanbiao, Yang S X.An adaptive approach based on KPCA and SVM for real-time fault diagnosis of HVCBs[J]. IEEE Trans. on Power Delivery (S0885-8977), 2011, 26(3): 1960-1971. [6] 李鹏飞, 周文俊, 曾国, 等. 高压断路器合闸弹簧动态特性及储能状态检测方法[J]. 电工技术学报, 2016, 31(3): 104-112. Li Pengfei, Zhou Wenjun, Zeng Guo, et al.The dynamic characteristics and energy storage detection method of high-voltage circuit breaker closing spring[J]. Transaction of China Electrotechnical Society, 2016, 31(3): 104-112. [7] 王小华, 荣命哲, 吴诩, 等. 高压断路器故障诊断专家系统中快速诊断及新知识获取方法[J]. 中国电机工程学报, 2007, 27(3): 95-99. WANG Xiaohua, RONG Mingzhe, WU Yi, et al.Method of quick fault diagnosis and new knowledge obtainment for high voltage circuit breaker expert system[J]. Proceedings of the CSEE, 2007, 27(3): 95-99. [8] 杨凌霄, 朱亚丽. 基于概率神经网络的高压断路器故障诊断[J]. 电力系统保护与控制, 2015, 43(10): 62-67. Yang Lingxiao, Zhu Yali.High voltage circuit breaker fault diagnosis of probabilistic neural network[J]. Power System Protection and Control, 2015, 43(10): 62-67. [9] 周阳, 王宝华. 基于多传感器信号融合的真空断路器机械特性状态评价[J]. 电气技术, 2016, 1(6): 30-35. ZHOU Yang, WANG Baohua.Mechanical characteristic state evaluation of vacuum circuit breaker based on multi-sensor signal fusion[J]. Electrical Engineering, 2016, 1(6): 30-35. [10] 姜生, 李世民, 王继元. 真空断路器机械特性的探讨[J]. 高压电器, 2002, 38(4): 61-64. Jiang Sheng, Li Shimin, Wang Jiyuan.Disscussion on the mechanical characteristic of vacuum circuit breaker[J]. High Voltage Apparatus, 2002, 38(4): 61-64. [11] 陈建平, 胡占强, 苏晓东. 智能化断路器机械特性在线监测关键技术设计[J]. 高压电器, 2014, 50(4): 108-112. Chen Jianping, Hu Zhanqiang, Su Xiaodong.Key technology design to on-line monitoring of mechanical charactersitics for intelligent vacuum circuit breaker[J]. High Voltage Apparatus, 2014, 50(4): 108-112. [12] 程序, 关永刚, 张文鹏, 等. 基于因子分析和支持向量机算法的高压断路器机械故障诊断方法[J]. 电工技术学报, 2014, 29(7): 209-215. Cheng Xu, Guan Yonggang, Zhang Wenpeng, et al.Diagnosis method on the mechanical failure of high voltage circuit breakers based on factor analysis and SVM[J]. Transaction of China Electrotechnical Society, 2014, 29(7): 209-215. [13] 钟家喜, 李保全, 李亚红. 高压断路器机械状态与监测技术的探索与实践[J]. 高压电器, 2011, 47(2): 53-60. Zhong Jiaxi, Li Baoquan, Li Yahong.Exploration and pratices of mechanical state diagnosis and monitoring techniques for high voltage circuit breaker[J]. High Voltage Apparatus, 2011, 47(2): 53-60. [14] Jia Xu, Lu Huchuan, Yang Minghsuan.Visual tracking via adaptive structural local sparse appearance model[C]//Proceeding of IEEE Conference on Computer Vision and Pattern Recognition, Los Alamitos, CA: IEEE Computer Society, 2012: 1822-1829. [15] Wu Yi, Lim Jongwoo, Yang Ming-hsuan.Online object tracking: A benchmark[C]//Proceeding of IEEE Conference on Computer Vision and Pattern Recognition, Los Alamitos, CA: IEEE Computer Society, 2013: 1-8. [16] B Babenko, M H Yang, S Belongie.Visual tracking with online Multiple Instance Learning[C]//Computer Vision and Pattern Recognition (CVPR), Miami, FL, 2009: 983-990. [17] Z Kalal, J Matas, K Mikolajczyk.P-N learning: Bootstrapping binary classifiers by structural constraints[C]//Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, 2010: 49-56. [18] D Ross, J Lim, R.-S Lin, et al. Yang. Incremental Learning for Robust Visual Tracking[J]. IJCV (S0920-5691), 2008, 77(1): 125-141. [19] T Zhang, B Ghanem, S Liu, N Ahuja.Robust visual tracking via multi-task sparse learning[C]. Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, Providence, RI, 2012: 2042-2049. [20] Guangbin Huang, Qinyu Zhu, C K Siew. Extreme learning machine: theory and applications[J]. Neuro computing (S0925-2312), 2006, 70(1): 489-501. [21] 郅萍, 缪希仁, 吴晓梅. 低压系统短路故障建模及电流预测技术[J]. 电力系统保护与控制, 2016, 44(7): 39-46. Zhi Ping, MIAO Xiren, WU Xiaomei.Low-voltage system short-circuit modeling and its current prediction technology[J]. Power System Protection and Control, 2016, 44(7): 39-46. [22] Huang Guangbin.An insight into extreme learning machines: random neurons, random features and kernels[J]. Cognitive Computation (S1866-9956), 2014, 6(3): 376-390. |