Journal of System Simulation ›› 2019, Vol. 31 ›› Issue (11): 2216-2227.doi: 10.16182/j.issn1004731x.joss.19-FZ0382
Previous Articles Next Articles
Ou Qiao1,2, He Xiaoyuan2, Tao Jiuyang2
Received:
2019-05-28
Revised:
2019-07-30
Online:
2019-11-10
Published:
2019-12-13
CLC Number:
Ou Qiao, He Xiaoyuan, Tao Jiuyang. Overview of Cooperative Target Assignment[J]. Journal of System Simulation, 2019, 31(11): 2216-2227.
[1] 张明星, 程光权, 刘忠, 等. 多武器协同作战发射时序规划方法[J]. 指挥与控制学报, 2017, 3(1): 10-18. Zhang Mingxing, Cheng Guangquan, Liu Zhong, et al.Schedule of Launch Sequential Timing in Multiple Weapons Cooperative Engagement[J]. Journal of Command and Control, 2017, 3(1): 10-18. [2] 蔡怀平, 陈英武. 武器-目标分配问题研究进展[J]. 火力与指挥控制, 2006, 32(12): 11-15. Cai Huaiping, Chen Yingwu.The Development of the Research on Weapon-Target Assignment Problem[J]. Fire Control & Command Control, 2006, 32(12): 11-15. [3] 赫尔曼·哈肯. 高等协同学[M]. 郭治安译. 北京: 科学出版社, 1989. Hermann Haken.Higher Synergetics[M]. Guo Zhian's Translation. Beijing: Science Press, 1989. [4] 特鲁申. 关于协同的本质问题[Z]. 总参谋部军训部, 译外军军事期刊译编, 2015. Trushen. On the Essence of Synergy[Z]. Military Training Department of the General Staff, Translation. Translated Editor of Foreign Military Journals, 2015. [5] 中国人民解放军国防大学. 联合作战基本理论[Z]. 北京: 国防大学出版社, 2017. National Defense University of the People's Liberation Army. Basic Theory of Joint Operations[Z]. Beijing: National Defense University Press, 2017. [6] 胡晓峰, 荣明. 关于联合作战规划系统的几个问题[J]. 指挥与控制学报, 2017, 3(4): 273-280. Hu Xiaofeng, Rong Ming.Several Questions about Joint Operations Planning System[J]. Journal of Command and Control, 2017, 3(4): 273-280. [7] Lloyd S P, Witsenhausen H S.Weapons Allocation is NP-Complete[C]. IEEE Summer Conference on Simulation. Reno, Nevada, 1986. [8] Hosein P A, Walton J T, Athans M.Dynamic weapon-target assignment problems with vulnerable C2 nodes[J]. Proceedings of the Command & Control Symposium (S2577-1604), 1988: 1786-1795. [9] Khosla D.Hybrid genetic approach for the dynamic weapon-target allocation problem[J]. Proceedings of SPIE the International Society for Optical Engineering (S0277-786X), 2001: 244-259. [10] Adnan Y, Ron L W, Hee S H, et al.The Generalized Weapon Target Assignment Problem[C]. 10th International Command and Control Research and Technology Symposium, the Future of C2, June 13-16. McLean, VA: Lockheed Martin Corporation. 2005. [11] Shima T, Rasmussen S J, Sparks A G, et al.Multiple task assignments for cooperating uninhabited aerial vehicks using genetic algorithms[J]. Computers & Operations Research(S0305-0548), 2006, 33(11): 3252-3269. [12] 王士同, 刘征. 动态武器目标分配问题的DWTA-GA算法[J]. 华东船舶工业学院学报, 1999, 13(5): 17-22. Wang Shitong, Liu Zheng.DWTA-GA Algorithm for Dynamic Weapon Target Allocation[J]. Journal of East China Institute of Shipbuilding Industry, 1999, 13(5): 17-22. [13] 韩松臣. 导弹武器系统效能分析的随机理论方法[M]. 北京: 国防工业出版社, 2001. Han Songchen.Random Theory Method for Effectiveness Analysis of Missile Weapon Systems[M]. Beijing: National Defense Industry Press, 2001. [14] 蔡怀平, 刘靖旭, 陈英武. 动态武器目标分配问题的马尔可夫性[J]. 国防科学技术大学学报, 2006, 28(3): 124-127. Cai Huaiping, Liu Jingxu, Chen Yingwu.Markov Property of Dynamic Weapon Target Allocation[J]. Journal of National University of Defense Science and Technology, 2006, 28(3): 124-127. [15] 李勇君, 黄卓, 郭波, 等. 武器-目标分配问题综述[J]. 兵工自动化, 2009, 28(11): 1-9. Li Yongjun, Huang Zhuo, Guo Bo, et al.Summary of Weapon-Target Assignment[J]. Military Automation, 2009, 28(11): 1-9. [16] 刘传波, 邱志明, 吴玲, 等. 动态武器目标分配问题的研究现状与展望[J]. 电光与控制, 2010, 17(11): 43-49. Liu Chuanbo, Qiu Zhiming, Wu Ling, et al.Research Status and Prospect of Dynamic Weapon Target Allocation[J]. Electro-optic and control, 2010, 17(11): 43-49. [17] 叶青松, 胡笑旋, 马华伟. 多无人机编队协同目标分配的两阶段求解方法[J]. 合肥工业大学学报(自然科学版), 2015(10): 1431-1436. Ye Qingsong, Hu Xiaoxuan, Ma Huawei.Two-stage Solution Method for Multi-UAV Formation Cooperative Target Allocation[J]. Journal of Hefei University of Technology (Natural Science Edition), 2015(10): 1431-1436. [18] 毛昭军, 李云芝, 蔡业泉. 防空作战中合同网协议分布式目标分配算法[J]. 火力与指挥控制, 2008, 33(1): 90-93. Mao Zhaojun, Li Yunzhi, Cai Yequan.Distributed Target Assignment Algorithms for Contract Network Protocol in Air Defense Operations[J]. Firepower and Command Control, 2008, 33(1): 90-93. [19] 唐苏妍, 梅珊, 朱一凡, 等. 基于扩展合同网协议的分布式武器目标分配方法[J]. 火力与指挥控制, 2011, 33(3): 568-574. Tang Suyan, Messan, Zhu Yifan, et al.Distributed Weapon Target Allocation Method based on Extended Contract Network Protocol[J]. Firepower and Command Control, 2011, 33(3): 568-574. [20] 肖玉杰, 李杰, 刘方. 基于合同网的分布式动态任务分配算法[J]. 舰船科学技术, 2015, 37(3): 113-118. Xiao Yujie, Li Jie, Liu Fang.Distributed Dynamic Task Allocation Algorithm based on Contract Network[J]. Ship Science and Technology, 2015, 37(3): 113-118. [21] 黎子芬, 李相民, 代进进, 等. 编队对地动态联合火力分配建模与仿真研究[J]. 系统仿真学报, 2013, 25(12): 2900-2905. Li Zifen, Li Xiangmin, Dai Jinjin, et al.Research of Modeling and Simulation on Formation Attack to Ground Dynamic Joint Fire Distribution[J]. Journal of System Simulation, 2013, 25(12): 2900-2905. [22] 腾讯AI研究院. 人工智能[M]. 北京: 中国人民大学出版社, 2017: 94-98. Tencent AI Research Institute. Artificial Intelligence[M]. Beijing: Renmin University Press, 2017: 94-98. [23] Hopfield J, Tank D W.Neural Computation of Decisions in Optimization Problems[J]. Biological Cybernetics (S1432-0770), 1985, 52(14): 141-152. [24] Wacholder E.A Neural Network-based Optimization Algorithm for the Weapon-Target Assignment[R]. DE89-007879, 1989. [25] Stephen Lucci, Danny Kopec.人工智能[M]. 林赐译. 北京: 人民邮电出版社, 2018: 291-331. Stephen Lucci, Danny Kopec.Artificial Intelligence[M]. Lin Zhi, Translation. Beijing: People's Posts and Telecommunications Press, 2018: 291-331. [26] 吴坤鸿, 詹世贤. 分布式遗传模拟退火算法的火力打击目标分配优化[J]. 智能系统学报, 2017, 12(4): 89-92. Wu Kunhong, Zhan Shixian.Distributed Genetic Simulated Annealing Algorithm for Fire Target Allocation Optimization[J]. Journal of Intelligent Systems, 2017, 12(4): 89-92. [27] 陈曼, 周凤星. 改进粒子群算法的舰载武器目标分配[J]. 火力与指挥控制, 2018, 43(11): 72-76. Chen Man, Zhou Fengxing.Shipborne Weapon Target Assignment based on Improved Particle Swarm Optimization[J]. Firepower and command control, 2018, 43(11): 72-76. [28] 王连山. 关于遗传、蚁群、禁忌搜索算法的比较[J]. 电脑编程技巧与维护, 2009(24): 18-21. Wang Lianshan.Comparisons of Genetic, Ant Colony and Tabu Search Algorithms[J]. Computer programming skills and maintenance, 2009(24): 18-21. [29] 蔡怀平, 陈英武, 邢立宁. SVNTS算法的动态武器目标分配问题研究[J]. 计算机工程与应用, 2006(31): 7-10. Cai Huaiping, Chen Yingwu, Xing Lining.Research on Dynamic Weapon Target Assignment Based on SVNTS Algorithms[J]. Computer Engineering and Applications, 2006 (31): 7-10. [30] 徐加强, 毕义明, 汪民乐, 等. 基于时空约束的常规导弹火力分配建模与实现[J]. 系统工程与电子技术, 2011, 33(9): 2025-2029. Xu Qiang, Bi Yiming, Wang Minle, et al.Modeling and Implementation of Conventional Missile Fire Distribution based on Space-time Constraints[J]. Systems Engineering and Electronic Technology, 2011, 33(9): 2025-2029. [31] Holland J.Adaptation in Natural and Artificial Systems[M]. Ann Arbor, MI: University of Michigan, 1975. [32] 陈成, 邢立宁, 谭跃进. 求解多机协同任务规划的改进遗传算法[J]. 兵工自动化, 2010, 29(9): 28-31. Chen Cheng, Xing Lining, Tan Yuejin.Improved Genetic Algorithm for Solving Multi-machine Cooperative Task Planning[J]. Military Automation, 2010, 29(9): 28-31. [33] 杨山亮, 黄健, 刘洋, 等. 基于遗传算法的联合火力WTA问题研究[J]. 计算机仿真, 2012, 29(3): 61-64. Yang Shanliang, Huang Jian, Liu Yang, et al.Research on Joint Firepower Weapon Target Assignment Problem Based on Genetic Algorithms[J]. Computer Simulation, 2012, 29(3): 61-64. [34] 费凯, 杨任农, 黄震宇, 等. 考虑时间约束的空战编队协同火力分配研究[J]. 计算机工程与应用, 2016, 52(13): 259-264. Fei Kai, Yang Rennong, Huang Zhenyu, et al.Study on Cooperative Fire Distribution of Air Combat Formation Considering Time Constraints[J]. Computer Engineering and Application, 2016, 52(13): 259-264. [35] 王少蕾, 陈维义, 顾雪峰. 自适应差分进化算法求解多平台多武器-目标分配问题[J]. 系统工程与电子技术, 2013, 35(10): 2115-2120. Wang Shaolai, Chen Weiyi, Gu Xuefeng.Adaptive Differential Evolution Algorithms for Multi-Platform Weapon-Target Assignment[J]. Systems Engineering and Electronic Technology, 2013, 35(10): 2115-2120. [36] 赵明. 多无人机系统的协同目标分配和航迹规划方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. Zhao Ming.Research on Cooperative Target Assignment and Path Planning for Multi-UAV System[D]. Harbin: Harbin University of Technology, 2016. [37] Storn R, Price K.Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal Global Optimization (S0925-5001), 1997, 11(4): 341-359. [38] 雍龙泉. 和声搜索算法研究进展[J]. 计算机系统应用, 2011, 20(7): 244-248. Yonglongquan. Progress in Harmony Search Algorithms[J]. Computer System Applications, 2011, 20(7): 244-248. [39] 张媛, 张立民, 刘文彪, 等. 逆转变异蚁群算法在CGF多目标分配[J]. 电光与控制, 2012, 19(3): 21-24. Zhang Yuan, Zhang Limin, Liu Wenbiao, et al.Reverse Mutation Ant Colony Algorithm in CGF Multi-objective Allocation[J]. Electro-optic and control, 2012, 19(3): 21-24. [40] 张新. 量子蚁群算法现状综述[J]. 机电一体化, 2014(1): 13-17. Zhang Xin.A Review of the Status Quo of Quantum Ant Colony Algorithm[J]. Mechatronics, 2014(1): 13-17. [41] 肖中晖, 寇英信, 李战武, 等. 火力分配多目标优化的IBACO算法[J]. 火力与指挥控制, 2017, 42(7): 165-169. Xiao Zhonghui, Kou Yingxin, Li Zhanwu, et al.IBACO Algorithm for Multi-objective Optimization of Firepower Allocation[J]. Firepower and command control, 2017, 42(7): 165-169. [42] 薛洪波, 伦淑娴. 粒子群算法在多目标优化中的应用综述[J]. 渤海大学学报(自然科学版), 2009, 30(3): 265-269. Xue Hongbo, Lun Shuxian.Summary of the Application of Particle Swarm Optimization in Multi-objective Optimization[J]. Journal of Bohai University (Natural Science Edition), 2009, 30(3): 265-269. [43] 杨飞, 王青, 候砚泽. 基于整数域改进粒子群优化算法的多平台武器目标分配[J]. 兵工学报, 2011, 32(7): 906-912. Yang Fei, Wang Qing, Hou Yanze.Multi-platform Weapon Target Allocation based on Improved Particle Swarm Optimization Algorithm in Integer Domain[J]. Journal of Military Engineering, 2011, 32(7): 906-912. [44] 王强, 丁全心, 张安等. 多机协同对地攻击目标分配算法[J]. 系统工程与电子技术, 2012, 34(7): 1400-1405. Wang Qiang, Ding Quanxin, Zhang An, et al.Target Allocation Algorithm for Multi-machine Cooperative Ground Attack[J]. Systems Engineering and Electronic Technology, 2012, 34(7): 1400-1405. [45] 范成礼, 刑清华, 郑明发, 等. 基于IDPSO的武器目标分配优化算法[J]. 系统工程与电子技术, 2015, 37(2): 336-342. Fan Chengli, Peng Tsinghua, Zheng Mingfa, et al.An IDPSO-based Optimization Algorithm for Weapon Target Allocation[J]. Systems Engineering and Electronic Technology, 2015, 37(2): 336-342. [46] 夏维, 刘新学, 郑明发, 等. 基于改进型多目标粒子群优化算法的武器-目标分配[J]. 兵工学报, 2016, 37(11): 2085-2093. Xiawi, Liu Xinxue, Zheng Mingfa, et al. Weapon-Target Assignment based on Improved Multi-objective Particle Swarm Optimization[J]. Journal of Military Engineering, 2016, 37(11): 2085-2093. [47] 刘志超, 石章松, 姜涛, 等. 基于最小资源损耗的火力分配研究[J]. 火力与指挥控制, 2018, 43(6): 167-170. Liu Zhichao, Shi Zhangsong, Jiang Tao, et al.Research on Fire Distribution Based on Minimum Resource Loss[J]. Fire and Command Control, 2018, 43(6): 167-170. [48] Wu F, Zilberstein S, Chen X.Point-based policy generation for decentralized POMDPs[C]. In: Proceeding of AAMAS-10. Toronto, Canada: the 9th International Conference on Autonomous Agents and Multiagent Systems, 2010: 1307-1314. [49] Wu F, Zilberstein S, Chen X.Trial-based dynamic programming for muti-agent planning[C]. Proceeding of AAMAS-10. Atlanta, USA: the 9th International Conference on Autonomous Agents and Multiagent Systems, 2010: 908-914. [50] Wu F, Zilberstein S, Chen X.Rollout sampling policy iteration for decentralized POMDPs[C]. Proceeding of UAI-10. Catalina Island, USA: the 9th International Conference on Autonomous Agents and Multiagent Systems, 2010: 666-673. [51] A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning[J/OL]. [2019-05-28].https://arxiv.org/abs/1711. 00832. |
[1] | Yejian Zhao, Yanhong Wang, Jun Zhang, Hongxia Yu, Zhongda Tian. Application of Improved Q Learning Algorithm in Job Shop Scheduling Problem [J]. Journal of System Simulation, 2022, 34(6): 1247-1258. |
[2] | Peipei Zhou, Xinglin Hou. An Unsupervised Deep Neural Network for Image Fusion [J]. Journal of System Simulation, 2022, 34(6): 1267-1274. |
[3] | Tong Wu, Qinghui Wang, Zhijia Xu. Study on the Scale Characteristics of Permeability of TPMS Porous Materials [J]. Journal of System Simulation, 2022, 34(5): 1015-1024. |
[4] | Na Ni, Kunjin He, Xincheng Zhu, Zhengming Chen. Research on Parametric Modeling and Deformation Method of Human Muscle [J]. Journal of System Simulation, 2022, 34(5): 1109-1117. |
[5] | Xin Zhou, Weiping Wang, Yifan Zhu, Tao Wang, Tian Jing. An Unmanned Swarm Search Method Based on Human-Robot Cooperation [J]. Journal of System Simulation, 2022, 34(4): 735-744. |
[6] | Xinyu Gao, Jing Ni. Optimization of Dynamic Post-disaster Emergency Distribution Network under Perspective of Rescue Efficiency [J]. Journal of System Simulation, 2022, 34(4): 806-816. |
[7] | Kaituan Feng, Jie Yuan. Research on Discrete Workshop Task Assignment Based on Improved Water Filling Algorithm [J]. Journal of System Simulation, 2022, 34(4): 768-776. |
[8] | Ou Xie, Aiguo Song, Qixin Zhu. Study on Near-body Pressure Characteristics of Bionic Robotic Fish Undulating in Near Wall Region [J]. Journal of System Simulation, 2022, 34(4): 870-877. |
[9] | Guangxu Xi, Yongyi Liu, Chong Wu, Junjie Zhang, Yinghao Chen. Key Technology Research on Stall Spin Simulation Training System of an Aircraft [J]. Journal of System Simulation, 2022, 34(4): 878-890. |
[10] | Jianpeng Hu, Xia Luo. Research on the Simulation Method of Urban Rail Transit Feedback Assignment [J]. Journal of System Simulation, 2022, 34(3): 512-526. |
[11] | Yan Bai, Lulu Wu, Yin'e He, Yuying Wang. Energy Consumption Prediction for Air-conditioning System Based on Dynamic Temperature Control [J]. Journal of System Simulation, 2022, 34(2): 366-375. |
[12] | Fan Changjia, Du Yanqiu, Liang Di, Hu Kai, Huang Jiayan. Modeling and Simulation of Emergency Medical Resources Allocation in Shanghai during COVID-19 [J]. Journal of System Simulation, 2022, 34(1): 93-103. |
[13] | Liu Hao, Mao Hongxia, Xiao Zhihe, Liu Zheng. Simulation of Rocket Exhaust Plumes Recognition Based on Dynamic Time Warping [J]. Journal of System Simulation, 2022, 34(1): 126-133. |
[14] | Wang Bohan, Wu Tingyu, Li Wenhao, Huang Da, Jin Bo, Yang Feng, Zhou Aimin, Wang Xiangfeng. Large-scale UAVs Confrontation Based on Multi-agent Reinforcement Learning [J]. Journal of System Simulation, 2021, 33(8): 1739-1753. |
[15] | Liu Xiazhen, Yuan Wu, Li Qi, Zhao Rui, Zhang Jian, Lu Zhonghua. Simulation and Optimization of Supersonic Drag Characteristics of Blunt Cone Ascender [J]. Journal of System Simulation, 2021, 33(7): 1582-1590. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||