[1] Vaibhav P, Poonam S.How Heterogeneity Affects the Design of Hadoop MapReduce Schedulers: A State-of-the-Art Survey and Challenges[J]. Big Data (S2167-6461), 2018, 6(2): 72-95. [2] Jafarnejad G E, Masoud R A, Nasih Q N.Load-balancing algorithms in cloud computing: A survey[J]. Journal of Network and Computer Applications (S1084- 8045), 2017, 88: 50-71. [3] Nima K S, Jafari N N.MapReduce and its Applications, Challenges, and Architecture: a Comprehensive Review and Directions for Future Research[J]. Journal of Grid Computing (S1570-7873), 2017, 15(3): 295-321. [4] Shivnath B.Towards automatic optimization of MapReduce programs[C]. Proceedings of the 1st ACM Symposium on Cloud Computing (SoCC 10), Indianapolis, USA, Jun 10- 11, 2010. New York, NY, USA: ACM, 2010: 137-142. [5] Herodotou H, Lim H, Luo Gang, et al.Starfish: a self-tuning system for big data analytics[C]. Proceedings of the 5th Biennial Conference on Innovative Data Systems Research (CIDR 11), Asilomar, USA, Jan 9-12. 2011: 261-272. [6] Herodotos H, Shivnath B.Profiling, what- if analysis, and cost-based optimization of MapReduce programs[C]. Proceedings of the 36th International Conference on Very Large Data Bases (VLDB 10), Singapore, Sep 13-17. 2010: 1111-1122. [7] Tian C, Zhou H J, He Y Q, et al.A dynamic MapReduce scheduler for heterogeneous workloads[C]. Proceedings of the 8th International Conference on Grid and Cooperative Computing (GCC 09), Aug 27- 29, Lanzhou, China. 2009: 218-224. [8] Jahani E, Cafarella M J, Re C.Automatic optimization for MapReduce programs[C]. Proceedings of the 37th International Conference on Very Large Data Bases (VLDB 11), Seattle, USA, Aug 29-Sep 3.2011: 385-396. [9] Ahmad F, Chakradhar S T, Raghunathan A, et al.Tarazu: optimizing MapReduce on heterogeneous clusters[C]. Proceedings of the 7th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS 12), London, UK, May 3-7. 2012: 61-74. [10] Polo J, Carrera D, Becerra Y, et al.Performance management of accelerated MapReduce workloads in heterogeneous clusters[C]. Proceedings of the 2010 39th International Conference on Parallel Processing (ICPP 10), San Diego, USA, Sep 13- 16, 2010. Washington, DC. USA: IEEE Computer Society, 2010: 653-662. [11] Fadika Z, Dede E, Hartog J, et al.MARLA: MapReduce for heterogeneous clusters[C]. Proceedings of the 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid 12), Ottawa, Canada, May 13-16, 2012. Washington, DC. USA: IEEE Computer Society, 2012: 49-56. [12] Zhuo T, Zhou J Q, Li K L, Li R X.A MapReduce task scheduling algorithm for deadline constraints[J]. Cluster Computing (S1386-7857), 2013, 16(4): 651-662. [13] 马莉, 唐善成, 王静, 等. 云计算环境下的动态反馈作业调度算法[J]. 西安交通大学学报, 2014, 48(7): 77-82. Ma Li, Tang Shancheng, Wang Jing, et al.Dynamic Feedback Job Scheduling Algorithm in Cloud Computing[J]. Journal of Xi’an Jiaotong University, 2014, 48(7): 77-82. [14] Xu X Y, Tang M L, Tian Y C.QoS-guaranteed Resource Provisioning for Cloud-Based MapReduce in Dynamical Environments[J]. Future Generation Computer System (S0167-739X), 2017, 78: 18-30. [15] Suresh S, Gopalan N P.An optimal task selection scheme for Hadoop scheduling[J]. IERI Procedia (S2212-6678), 2014, 10: 70-75. [16] Rasooli A, Down D G, COSHH: A classification and optimization based scheduler for heterogeneous Hadoop systems[J]. Future Generation computer Systems (S0167-739X), 2014, (36): 1-15. [17] Zhang F, Cao J, Li K, et al.Multi-objective scheduling of many tasks in cloud platforms[J]. Future Generation Computer Systems (S0167-739X), 2014, 37: 309-320. [18] 夏家莉, 陈辉, 杨兵. 一种动态优先级实时任务调度算法[J]. 计算机学报, 2012, 35(12): 2685-2695. Xia Jiali, Chen Hui, Yang Bin.A Real-Time Tasks Scheduling Algorithm Based on Dynamic Priority[J]. Chinese Journal of Computers, 2012, 35(12): 2685-2695. [19] 宋杰, 徐澍, 郭朝鹏, 等. 一种优化MapReduce系统能耗的任务分发算法[J]. 计算机学报, 2016, 39(2): 323-338. Song Jie, Xu Shu, Guo Chaopeng, et al.A Task Distribution Algorithm for Energy Consumption Optimization of Map Reduce System[J]. Chinese Journal of computers, 2016, 39(2): 323-338. [20] Hopfield J J, Tank D W.Neural computation of decision in optimization problems[J]. Biol. Cybern (S0340-1200), 1985, 52: 141-152. [21] 王万良, 吴启迪, 徐新黎. 基于Hopfield神经网络的作业车间生产调度方法[J]. 自动化学报, 2002, 28(5): 838-844. Wang Wanliang, Wu Qidi, Xu Xinli.Hopfield Neural Network Approach for Job-Shop Scheduling Problems[J]. Acta Automatica Sinica, 2002, 28(5): 838-844. [22] 王秀利, 吴惕华. 一种求解多处理器作业调度的Hopfield神经网络方法[J]. 系统工程与电子技术, 2002, 24(8): 13-16. Wang Xiuli, Wu Tihua.Scheduling Mutiprocessor Job Using Hopfield Neural Network[J]. Systems Engineering and Electronics, 2002, 24(8): 13-16. [23] 徐昇, 业宁, 朱发, 等. Hopfield网络在视差空间上的立体匹配求解[J]. 计算机研究与发展, 2013, 50(5): 1021-1029. Xu Sheng, Ye Ning, Zhu Fa, et al.Solving the Stereo Matching in Disparity Image Space Using the Hopfield Neural Network[J]. Journal of Computer Research and Development, 2013, 50(5): 1021-1029. |