[1] Storn R, Price K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of global optimization (S0925-5001), 1997, 11(4): 341-359. [2] Das S, Suganthan P N. Differential Evolution: A Survey of the State-of-the-Art[J]. IEEE Transactions on Evolutionary Computation (S1089-778X), 2010, 15(1): 4-31. [3] Gong W, Yan X, Liu X, et al. Parameter extraction of different fuel cell models with transferred adaptive differential evolution[J]. Energy (S0360-5442), 2015, 86: 139-151. [4] 朱李楠, 王万良, 沈国江. 基于改进差分进化算法的云制造资源优化组合方法[J]. 计算机集成制造系统, 2017, 23(1): 203-214. Zhu Linan, Wang Wanliang, Shen Guojiang. Resource optimization combination method based on improved differential evolution algorithm for cloud manufacturing[J]. Computer Integrated Manufacturing Systems, 2017, 23(1): 203-214. [5] Mallipeddi R, Suganthan P N, Pan Q K, et al. Differential evolution algorithm with ensemble of parameters and mutation strategies[J]. Applied Soft Computing (S1568-4946), 2011, 11(2): 1679-1696. [6] Wang Y, Cai Z, Zhang Q. Differential evolution with composite trial vector generation strategies and control parameters[J]. IEEE Transactions on Evolutionary Computation (S1089-778X), 2011, 15(1): 55-66. [7] Zhou X, Wu Z, Wang H, et al. Enhancing differential evolution with role assignment scheme[J]. Soft Computing (S1432-7643), 2014, 18(11): 2209-2225. [8] Das S, Mullick S S, Suganthan P N. Recent advances in differential evolution–An updated survey[J]. Swarm and Evolutionary Computation (S2210-6502), 2016, 27: 1-30. [9] Zhou X, Zhang G. Differential Evolution With Underestimation-Based Multimutation Strategy[J]. IEEE Transactions on Cybernetics (S2168-2267), 2019, 49(4): 1-12. [10] Qin A K, Huang V L, Suganthan P N. Differential evolution algorithm with strategy adaptation for global numerical optimization[J]. IEEE Transactions on Evolutionary Computation (S1089-778X), 2009: 398-417. [11] Gong W, Cai Z, Ling C X, et al. Enhanced differential evolution with adaptive strategies for numerical optimization[J]. IEEE Transactions on Cybernetics (S2168-2267), 2011, 41(2): 397-413. [12] Wang H, Rahnamayan S, Sun H, et al. Gaussian Bare-Bones Differential Evolution[J]. IEEE Transactions on Cybernetics (S2168-2267), 2013, 43(2): 634-647. [13] Sun G, Lan Y, Zhao R. Differential evolution with Gaussian mutation and dynamic parameter adjustment[J]. Soft Computing (S1432-7643), 2019, 23(5): 1615-1642. [14] Mezura-Montes E, Velazquez-Reyes J, Coello C A C. Modified Differential Evolution for Constrained Optimization[C]//Proceedings of the IEEE International Conference on Evolutionary Computation. Canada: IEEE, 2006: 25-32. [15] Wang Y, Liu Z, Li J, et al. Utilizing cumulative population distribution information in differential evolution[J]. Applied Soft Computing (S1568-4946), 2016, 48: 329-346. [16] Wu G, Mallipeddi R, Suganthan P N, et al. Differential evolution with multi-population based ensemble of mutation strategies[J]. Information Sciences (S0020-0255), 2016. [17] Zhou Y, Li X, Gao L. A differential evolution algorithm with intersect mutation operator[J]. Applied Soft Computing (S1568-4946), 2013, 13(1): 390-401. [18] Wang H, Sun H, Li C, et al. Diversity enhanced particle swarm optimization with neighborhood search[J]. Information Sciences (S0020-0255), 2013, 223(2): 119-135. [19] Peng H, Guo Z, Deng C, et al. Enhancing differential evolution with random neighbors based strategy[J]. Journal of Computational Science (S1877-7503), 2018, 26: 501-511. [20] Garc I A S, Fern A Ndez A, Luengo J, et al. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power[J]. Information Sciences (S0020-0255), 2010, 180(10): 2044-2064. [21] Derrac J, Garc I A S, Molina D, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J]. Swarm and Evolutionary Computation (S2210-6502), 2011, 1(1): 3-18. [22] Zhan Z, Zhang J, Li Y, et al. Orthogonal Learning Particle Swarm Optimization[J]. IEEE Transactions on Evolutionary Computation (S1089-778X), 2011, 15(6): 832-847. [23] Wang F, Zhang H, Li K, et al. A hybrid particle swarm optimization algorithm using adaptive learning strategy[J]. Information Sciences (S0020-0255), 2018, 436-437: 162-177. [24] Gao W, Huang L, Liu S, et al. Artificial Bee Colony Algorithm Based on Information Learning[J]. IEEE Transactions on Cybernetics (S2168-2267), 2015, 45(12): 2827-2839. [25] Cui L, Zhang K, Li G, et al. Modified Gbest-guided artificial bee colony algorithm with new probability model[J]. Soft Computing (S1432-7643), 2018, 22(7): 2217-2243. [26] Lin Q, Zhu M, Li G, et al. A novel artificial bee colony algorithm with local and global information interaction[J]. Applied Soft Computing (S1568-4946), 2018, 62: 702-735. |