[1] Fiorini P, Shiller Z.Motion planning in dynamic environments using velocity obstacles[J]. The International Journal of Robotics Research (S1741-3176), 1998, 17(7): 760-772. [2] Berg J V D, Lin M, Manocha D. Reciprocal Velocity Obstacles for real-time multi-agent navigation[C]// Proceedings of the 2008 IEEE International Conference on Robotics and Automation. NJ: Piscataway, 2008. [3] Hansen N, Ostermeier A.Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation[C]// Proceedings of IEEE international conference on evolutionary computation. IEEE. NJ: Piscataway, 1996: 312-317. [4] Wolinski D, J Guy S, Olivier A H, et al. Parameter estimation and comparative evaluation of crowd simulations[J]. Computer Graphics Forum (S1467-8659), 2014, 33(2): 303-312. [5] Wolinski D, Guy S J, Olivier A H, et al.Optimization-based Pedestrian Model Calibration for Evaluation[J]. Transportation research procedia (S2352-1465), 2014: 228-236. [6] Helbing D, Farkas I, Vicsek T.Simulating dynamical features of escape panic[J]. Nature (S0028-0836), 2000, 407(6803): 487-490. [7] Zhong J, Cai W.Differential evolution with sensitivity analysis and the Powell's method for crowd model calibration[J]. Journal of Computational Science (S1877-7503), 2015, 9: 26-32. [8] Helbing D, Johansson A, Al-Abideen H Z. Dynamics of crowd disasters: An empirical study[J]. Physical review E (S1539-3755), 2007, 75(4): 046109. [9] Seer S, Brandle N, Ratti C, et al.Kinects and human kinetics: a new approach for studying pedestrian behavior[J]. Transportation Research Part C-emerging Technologies (S0968-090X), 2014: 212-228. [10] Zhang J, Klingsch W, Schadschneider A, et al.Transitions in pedestrian fundamental diagrams of straight corridors and T-junctions[J]. Journal of Statistical Mechanics: Theory and Experiment (S1742-5468), 2011(6): P06004. [11] 王静虹. 非常规突发情况下大规模人群疏散的不确定性研究[D]. 合肥: 中国科学技术大学, 2013. Wang Jinghong.Research on the uncertainties of crowd large-scale evacuation under unconventional emergencies[D]. Hefei: University of Science and Technology of China, 2013. [12] Helbing D, Johansson A.Pedestrian, crowd and evacuation dynamics[M]. NY: Springer New York, 2009. [13] Storn R, Price K.Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization (S1573-2916), 1997, 11(4): 341-359. [14] Moussaïd M, Helbing D, Theraulaz G.How simple rules determine pedestrian behavior and crowd disasters[J]. Proceedings of the National Academy of Sciences (S1091-6490), 2011, 108(17): 6884-6888. [15] Johansson A, Helbing D, Shukla P K.Specification of the social force pedestrian model by evolutionary adjustment to video tracking data[J]. Advances in Complex Systems (S0219-5259), 2007: 271-288. [16] Ma L, Chen B, Wang X, et al.The analysis on the desired speed in social force model using a data driven approach[J]. Physica A: Statistical Mechanics and its Applications (S0378-4371), 2019, 525: 894-911. [17] Kim S, Guy S J, Liu W, et al.Brvo: Predicting pedestrian trajectories using velocity-space reasoning[J]. The International Journal of Robotics Research (S1741-3176), 2015, 34(2): 201-217. [18] He L, Pan J, Wang W, et al.Proxemic group behaviors using reciprocal multi-agent navigation[C]// 2016 IEEE International Conference on Robotics and Automation (ICRA). NJ: IEEE, 2016: 292-297. [19] Zhao M, Zhong J, Cai W.A Role-Dependent Data-Driven Approach for High-Density Crowd Behavior Modeling[J]. ACM Transactions on Modeling and Computer Simulation (TOMACS)(S1558-1195), 2018, 28(4): 28. |