Journal of System Simulation ›› 2020, Vol. 32 ›› Issue (6): 982-999.doi: 10.16182/j.issn1004731x.joss.18-0719
Previous Articles Next Articles
Yue Caixu1, Liu Xin1, Jiang Nan1, Liu Xianli1, He Genghuang2, Li Lingxiang2
Received:
2018-10-29
Revised:
2019-01-08
Online:
2020-06-25
Published:
2020-06-25
CLC Number:
Yue Caixu, Liu Xin, Jiang Nan, Liu Xianli, He Genghuang, Li Lingxiang. Research on Modeling Technology for Hard Cutting Process[J]. Journal of System Simulation, 2020, 32(6): 982-999.
[1] 童万恒. 刀具主要几何角度选择及硬态切削技术[J].华东科技(学术版), 2016, 13(10): 344. Tong Wanheng. Selection of main geometric angles of cutter and hard cutting technology[J]. East China Science and Technology(Academic Edition), 2016, 13(10): 344. [2] 岳彩旭, 刘献礼, 姬生园, 等. 硬态切削技术[J]. 航空制造技术, 2008, 1(18):26-29. Yue Caixu, Liu Xianli, Ji Shengyuan, et al. Hard cutting technology [J]. Aerospace Manufacturing Technology, 2008, 1(18): 26-29. [3] Chinchanikar S, Choudhury S K. Machining of hardened steel—Experimental investigations, performance modeling and cooling techniques: A review[J]. International Journal of Machine Tools & Manufacture (S0890-6955), 2015, 89(13): 95-109. [4] 杨奇彪. 高速切削锯齿形切屑的形成机理及表征[D].济南: 山东大学, 2012. Yang Qibiao. Formation mechanism and characterization of serrated chips for high-speed cutting[D]. Ji’nan: Shandong University, 2012. [5] 中山一雄. 金属切削加工理论[M]. 李云芳译. 北京:机械工业出版社, 1985. Zhongshan Yixiong. Metal cutting theory[M]. Translated by Li Yunfang. Beijing: China machine press, 1985. [6] Hou Z B, Ranga K. On a thermo-mechanical model of shearinstability inmachining[J]. CIRP Annals (S0007-8506), 1995, 44(1): 69-73. [7] Manyindo B M, Oxley P L B. Modelling the Catastrophic Shear Type of Chip When Machining Stainless Steel[J]. Proceedings of the Institution of Mechanical Engineers Part C:Journal of Mechanical Engineering Science (S0954-4062), 1986, 200(53): 349-358. [8] Vyas A. Mechanics of saw-tooth chip formation in metal cutting[J]. Journal of Manufacturing Science and Engineering-Transactions of the Asme (S1087-1357), 1999, 122(2): 163. [9] 王敏杰, 胡荣生, 刘培德. 金属材料热塑剪切失稳临界条件的切削法测定[J]. 兵器材料科学与工程, 1990, 1: 25-30. Wang Minjie, Hu Rongsheng, Liu Peide. cutting method for determination of critical conditions of thermoplastic shear instability in metallic materials[J]. Journal of Weapon Materials Science and Engineering, 1990, 1: 25-30. [10] Schulz H, Abele E. Materials aspects of saw- tooth chip formation in HSC machining[J]. CIRP (S0007-8506), 2001, 50(1): 45-48. [11] Molinari A, Musquar C, Sutter G. Adiabatic shear banding in high speed machining of Ti-6Al-4V: experiments and modeling[J]. International Journal of Plasticity (S0749-6419), 2002, 18(4): 443-459. [12] Ekinovic S, Begovic E. An approach to determine transition area from conventional to high-speed machining by means of chip shape analysis[J]. Achieves of Materials Science (S0138-032X), 2007(28): 35-39. [13] 施志辉, 赵玢, 王启义, 等. 金属切削加工切屑形成过程仿真技术[J]. 大连交通大学学报, 2000, 21(3): 64-68. Shi Zhihui, Zhao Ben, Wang Qiyi, et al. Simulation of metal cutting process chip formation process[J]. Journal of Dalian Jiaotong University, 2000, 21(3): 64-68. [14] Pawade R S, Sonawane H A, Joshi S S. An Analytical Model to Predict Specific Shear Energy in High-Speed Turning of Inconel 718[J]. International Journal of Machine Tools and Manufacture (S0890-6955), 2009, 49(12/13): 979-990. [15] 吴申峰, 张雪萍. 淬硬轴承钢锯齿形切屑形成机理[J].上海交通大学学报, 2011, 45(1): 71-77. Wu Shenfeng, Zhang Xueping. Formation mechanism of steel serrated chip of hardened bearing[J]. Journal of Shanghai Jiaotong University, 2011, 45(1): 71-77. [16] 合烨, 王昌赢, 陈小安, 等. 硬态车削轴承钢GCr15 切屑形成机理分析[J]. 上海交通大学学报, 2013, 47(5): 800-805. He Ye, Wang Changying, Chen Xiaoan, et al. Analysis of the formation mechanism of hard turning bearing steel GCr15 chips[J]. Journal of Shanghai Jiaotong University, 2013, 47(5): 800-805. [17] Wang C, Ding F, Tang D, et al. Modeling and simulation of the high-speed milling of hardened steel SKD11 (62 HRC) based on SHPB technology[J]. International Journal of Machine Tools and Manufacture (S0890-6955), 2016, 108(13): 13-26. [18] 杜倩倩. 硬态车削淬硬钢切屑形成机理及表面完整性研究[D]. 济南: 济南大学, 2016. Du Qianqian. Study on the formation mechanism and surface integrity of hardened steel chips by turning them in hard state[D]. Jinan: Jinan University, 2016. [19] Meddour I, Yallese M A, Khattabi R, et al. Investigation and modeling of cutting forces and surface roughness when hard turning of AISI 52100 steel with mixed ceramic tool: cutting conditions optimization[J]. International Journal of Advanced Manufacturing Technology (S0268-3768), 2015, 77(5/8): 1387-1399. [20] Liu C R, Mittal S. Single-step superfinish hard machining: Feasibility and feasible cutting conditions[J]. Robotics & Computer-Integrated Manufacturing (S0736-5845), 1996, 12(1): 15-27. [21] Ding T, Zhang S, Wang Y, et al. Empirical models and optimal cutting parameters for cutting forces and surface roughness in hard milling of AISI H13 steel[J]. International Journal of Advanced Manufacturing Technology (S0268-3768), 2010, 51(1-4): 45-55. [22] Azizi M W, Belhadi S, Yallese M A, et al. Surface roughness and cutting forces modeling for optimization of machining condition in finish hard turning of AISI 52100 steel[J]. Journal of Mechanical Science & Technology (S1738-494X), 2012, 26(12): 4105-4114. [23] Bouacha K, Yallese M A, Mabrouki T, et al. Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool[J]. International Journal of Refractory Metals & Hard Materials (S0263-4368), 2010, 28(3): 349-361. [24] Liu X L, Yuan Z J, Li Z J. Cutting temperature of quench beiarng steel GCr15 wth PCBN cutter[J]. Chinese Jounral of Mechanical Engineeirng (S1000-9345),1999, 12(4): 254-259. [25] Wan M, Zhang W H, Qin G H, et al. Efficient calibration of instantaneous cutting force coefficients and runout parameters for general end mills[J]. International Journal of Machine Tools &Manufacture (S0890-6955), 2007, 47: 1767-1776. [26] Budak E, Altintas Y, Armarego E J A. Prediction of Milling Force coefficients From Orthogonal Cutting Data[J]. Journal of Manufacturing Science and Engineering (S1087-1357), 1996, 118(2): 216-224. [27] Bao W Y, Tansel I N. Modeling micro-end-milling operations. Part I: analytical cutting force model[J]. International Journal of Machine Tools & Manufacture (S0890-6955), 2000, 40(15): 2155-2173. [28] Smith S, Tlusty J. An Overview of Modeling and Simulation of the Milling Process[J]. Journal of Engineering for Industry (S0022-0817), 1991, 113(2): 169-175. [29] Tuysuz O, Altintas Y, Feng H Y. Prediction of cutting forces in hree and five-axis ball-end milling with tool indentation effect[J]. International Journal of Machine Tools & Manufacture (S0890-6955), 2013, 66(2): 66-81. [30] Tuysuz O, Altintas Y, Feng H Y. Prediction of cutting forces in inclined surface ball-end milling[C]//Applied Mechanics: Canadian Congress, 2011. [31] Okafor A C, Sultan A A. Development of a mechanistic cutting orce model for wavy-edge bull-nose helical end-milling of inconel718 under emulsion cooling strategy[J]. Applied Mathematical Modelling (S0307-904X), 2016, 40(4) : 2637-2660. [32] Bhopale N N, Pawade R S, Joshi S S, et al. Analysis and modeling of Cutting Forces in Ball end Milling of Superalloy Inconel 718[J]. Journal of the Institution of Engineers(India): Mechanical Engineering Division (S0020-3408), 2011, 92: 11-18. [33] Huang Y, Liang S Y, Woodruff G W. Modeling of cutting forces under hard turning conditions considering tool wear effect[J]. Journal of Manufacturing Science & Engineering (S1087-1357), 2005, 127(2): 262-270. [34] 杨琳. 球头铣刀铣削淬硬钢模具铣削力及模具加工误差研究[D]. 哈尔滨: 哈尔滨理工大学, 2017. Yang Lin. Study on milling force and machining error of hardened steel dies by ball end milling cutter[D]. Harbin: Harbin University of Technology, 2017. [35] 吴石, 杨琳, 刘献礼, 等. 覆盖件模具曲面曲率特征对球头刀铣削力的影响[J]. 机械工程学报, 2017, 53(13): 188-198. Wu Shi, Yang Lin, Liu Xianli, et al. Effect of curvature characteristics of cover mold surface on milling force of ball end cutter[J]. Journal of Mechanical Engineering, 2017, 53(13): 188-198. [36] 李刚, 孔凡志, 王慧强, 等. 多硬度拼接淬硬Cr12MoV 铣削力的有限元分析[J]. 机械设计与研究, 2014, 30(5): 131-135. Li Gang, Kong Fanzhi, Wang Huiqinag, et al. Finite element analysis of splicing hardened Cr12MoV milling forces with multiple hardness[J]. Mechanical Design and Research, 2014, 30(5): 131-135. [37] 高世龙, 安立宝. CBN 刀具干式硬车切削力有限元仿真[J]. 机械设计与研究, 2016, 32(2): 131-134. Gao Shilong, An Libao. Finite element simulation of cutting force of CBN tool dry hard vehicle[J]. Mechanical Design and Research, 2016, 32(2): 131-134. [38] 王小纯, 曹景源, 郑涛. 人工神经网络预测高速铣削淬硬钢圆弧切削力[J]. 机械制造, 2009, 47(9): 56-58. Wang Xiaochun, Cao Jingyuan, Zheng Tao. Artificial neural network prediction of high speed milling of hardened steel circular arc cutting force[J]. Mechanical Manufacturing, 2009, 47(9): 56-58. [39] 曹登. 基于BP 神经网络的等温淬火球墨铸铁的切削力预测[D]. 苏州: 苏州大学, 2013. Cao Deng. Prediction of cutting force of isothermal quenched ductile iron based on BP neural network[D]. Suzhou: Soochow University, 2013. [40] Dosbaeva G K, El Hakim M A, Shalaby M A, et al. Cutting temperature effect on PCBN and CVD coated carbide tools in hard turning of D2 tool steel[J]. International Journal of Refractory Metals and Hard Materials(S0263-4368), 2015, 50(13): 1-8. [41] 李林文. 面向硬切削的切削区域温度场解析建模及实验研究[D]. 武汉: 华中科技大学, 2013. Li Linwen. Analytical modeling and experimental study of temperature field in cutting area for hard cutting[D]. Wuhan: Huazhong University of Science and Technology, 2013. [42] Yan S, Zhu D, Zhuang K, et al. Modeling and analysis of coated tool temperature variation in dry milling of Inconel 718 turbine blade considering flank wear effect[J]. Journal of Materials Processing Technology (S0924-0136), 2014, 214(12): 2985-3001. [43] Shihab S K, Khan Z A, Mohammad A, et al. RSM based Study of Cutting Temperature During Hard Turning with Multilayer Coated Carbide Insert[J]. Procedia Materials Science (S2211-8128), 2014, 6: 1233-1242. [44] Stephenson D A. Tool-work thermocouple temperature measurements-theory and implementation issues[J]. Journal of Engineering for Industry (S0022-0817), 1993, 115(4): 432-437. [45] Hirao M. Determining temperature distribution on flank face of cutting tool[J]. Journal of Materials Shaping Technology(S0931-704X), 1989, 6(3): 143-148. [46] 段春争, 李园园, 李国和, 等. 高速切削温度场测量技术研究现状[J]. 机械设计与制造, 2008(4): 212-214. Duan Chunzheng, Li Yuanyuan, Li Guohe, et al. The present status of measuring technique of temperature field during high speed machining[J]. Machinery Design and Manufacture, 2008(4): 212-214. [47] Wu, Han, Duong Nick H, Ma J, et al. CEL FEM Investigation of effects of microgrooved cutting tools in high speed machining of AISI 1045 steel[C]. ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing. American Society of Mechanical Engineers, 2017. [48] Du Jin, Zhang Jingjie, Wang Liguo. Heat partition and rake face temperature in the machining of H13 steel with coated cutting tools[J]. The International Journal of Advanced Manufacturing Technology (S0268-3768), 2018, 94(9/12): 3691-3702. [49] 周浩东. 拼接淬硬钢铣削过程数值模拟及稳定性研究[D]. 杭州: 浙江工业大学, 2013. Zhou Haodong. Numerical simulation and stability study of splicing hardened steel milling process[D]. Hangzhou: Zhejiang University of Technology, 2013. [50] 杜倩倩, 付秀丽, 谢安冉, 等. 涂层刀具硬态车削H13钢温度场模拟研究[J]. 工具技术, 2016, 50(2): 20-23. Du Qianqian, Fu Xiuli, Xie Anran, et al. Simulation study of H13 steel temperature field in hard turning of coated cutting tools[J]. Tool Technology, 2016, 50(2): 20-23. [51] Kara F, AslantaŞ K, Cicek A. Prediction of cutting temperature in orthogonal machining of AISI 316L using artificial neural network[J]. Applied Soft Computing (S1568-4946), 2016, 38(13): 64-74. [52] Mia M, Dhar N R. Response surface and neural network based predictive models of cutting temperature in hard turning[J]. Journal of Advanced Research (S2090-1232), 2016, 7(6): 1035-1044. [53] 郭松. 刀具磨损引起的工件加工误差建模与补偿技术研究[D]. 南京: 南京航空航天大学, 2012. Guo Song. Modeling and compensation technology of workpiece machining error caused by tool wear[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. [54] Aouici H, Yallese M A, Chaoui K, et al. Analysis of surface roughness and cutting force components in hard turning with CBN tool: Prediction model and cutting conditions optimization[J]. Measurement (S0263-2241), 2012, 45(3): 344-353. [55] Feng C X, Wang X F. Surface roughness predictive modeling: neural networks versus regression[J]. IIE Transactions (S0740-817X), 2003, 35(1): 11-27. [56] Sahoo A, Rout A, Das D. Response surface and artificial neural network prediction model and optimization for surface roughness in machining[J]. International Journal of Industrial Engineering Computations (S1923-2934), 2015, 6(2): 229-240. [57] Özel T, Karpat Y. Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks[J]. International Journal of Machine Tools and Manufacture (S0890-6955), 2005, 45(4/5): 467-479. [58] AkkuŞ H, Asilturk i. Predicting surface roughness of AISI 4140 steel in hard turning process through artificial neural network, fuzzy logic and regression models[J]. Scientific Research and Essays(S1992-2248), 2011, 6(13): 2729-2736. [59] Mia M, Dhar N R. Modeling of Surface Roughness Using RSM, FL and SA in Dry Hard Turning[J]. Arabian Journal for Science and Engineering(S2193-567X), 2017: 1-12. [60] Iqbal A, He N, Li L, et al. A fuzzy expert system for optimizing parameters and predicting performance measures in hard-milling process[J]. Expert Systems with Applications (S0957-4174), 2007, 32(4): 1020-1027. [61] Wu D W, Matsumoto Y. The effect of hardness on residual stresses in orthogonal machining of AISI 4340 steel/[J]. Annals of the New York Academy of Sciences (S0077-8923), 1990, 509(3): 89-102. [62] Huang K, Yang W. Analytical modeling of residual stress formation in workpiece material due to cutting[J]. International Journal of Mechanical Sciences (S0020-7403), 2016, 114(13): 21-34. [63] Ambrogio G, Filice L, Shivpuri R, et al. Application of NN technique for predicting the in-depth residual stresses during hard machining of AISI 52100 steel[J]. International Journal of Material Forming (S1960-620), 2008, 1(1): 39-45. [64] Umbrello D, Ambrogio G, Filice L, et al. An ANN approach for predicting subsurface residual stresses and the desired cutting conditions during hard turning[J]. Journal of Materials Processing Technology (S0924-0136), 2007, 189(1/3): 143-152. [65] 徐颖强, 李娜娜, 李万钟, 等. 硬态切削工件表面白层厚度预测方法[J]. 机械工程学报, 2014, 51(3): 182-189. Xu Yingqiang, Li Nana, Li Wanzhong, et al. Prediction method of white layer thickness on surface of hard cutting workpieces[J]. Journal of Mechanical Engineering, 2015, 51(3): 182-189. [66] Umbrello D, Jawahir I S. Numerical modeling of the influence of process parameters and workpiece hardness on white layer formation in AISI 52100 steel[J]. International Journal of Advanced Manufacturing Technology (S0268-33768), 2009, 44(9/10): 955-968. [67] 孔维森. 高速切削淬硬钢已加工表面白层和残余应力的预测与实验研究[D]. 大连: 大连理工大学, 2013. Kong Weisen. Prediction and experimental study of white layer and residual stress on the processed surface of hardened steel by high-speed cutting[D]. Dalian: Dalian University of Technology, 2013. [68] Caruso S, Outeiro J C, Umbrello D, et al. Modeling and experimental validation of the surface residual stresses induced by hard machining of AISI H13 tool steel[J]. International Journal of Material Forming (S1960-6206), 2010, 3(1): 515-518. [69] 岳彩旭. 硬态切削过程的有限元仿真与实验研究[D].哈尔滨: 哈尔滨理工大学, 2010. Yue Caixu. Finite element simulation and experimental study of hard cutting process[D]. Harbin: Harbin University of Technology, 2010. [70] Singh D, Rao P V. Flank wear prediction of ceramic tools in hard turning[J]. International Journal of Advanced Manufacturing Technology (S0268-3768), 2010, 50(5/8): 479-493. [71] Huang Y, Liang S Y. Modeling of CBN tool flank wear progression in finish hard turning[J]. Journal of Manufacturing Science and Engineering (S1087-1357), 2004, 126(1): 98-106. [72] Chinchanikar S, Choudhury S K. Predictive modeling for flank wear progression of coated carbide tool in turning hardened steel under practical machining conditions[J]. International Journal of Advanced Manufacturing Technology (S0268-3768), 2015, 76(5/8): 1185-1201. [73] Farahnakian M, Elhami S, Daneshpajooh H, et al. Mechanistic modeling of cutting forces and tool flank wear in the thermally enhanced turning of hardened steel[J]. The International Journal of Advanced Manufacturing Technology (S0268-3768), 2017, 88(9/12): 2969-2983. [74] 徐创文, 陈花玲, 刘晓斌. 偏最小二乘回归在刀具磨损试验建模中的应用[J]. 系统仿真学报, 2007, 19(13): 3115-3118. Xu Chuangwen, Chen Hualing, Liu Xiaobin. Application of partial least squares regression in modeling of tool wear test[J]. Journal of System Simulation, 2007, 19(13): 3115-3118. [75] Kishawy H A, Pang L, Balazinski M. Modeling of tool wear during hard turning with self-propelled rotary tools[J]. International Journal of Mechanical Sciences (S0020-7403), 2011, 53(11): 1015-1021. [76] Rao K V, Murthy B S N, Rao N M. Prediction of cutting tool wear, surface roughness and vibration of work piece in boring of AISI 316 steel with artificial neural network[J]. Measurement (S0263-2241), 2014, 51(13): 63-70. [77] Salvatore F, Saad S, Hamdi H. Modeling and simulation of tool wear during the cutting process[J]. Procedia CIRP (S2212-8271), 2013, 8(13): 305-310. [78] 程红玫, 高有山. 超高强度钢切削仿真和刀具磨损率建模研究[J]. 组合机床与自动化加工技术, 2017, 37(6): 145-149. Cheng Hongmei, Gao Youshan. Simulation of ultra-high-strength steel cutting and modeling of tool wear rate[J]. Combined Machine Tools and Automatic Processing Technology, 2017, 37(6): 145-149. [79] 张佳奕. 基于有限元仿真的PCBN 刀具磨损研究[D].哈尔滨: 哈尔滨理工大学, 2014. Zhang Jiayi. Research on PCBN tool wear based on finite element simulation[D]. Harbin: Harbin University of Technology, 2014. |
[1] | Cheng Lu, Xuesheng Jin. Design of Interactive Simulated Water Gun Fire Fighting Training System Based on Steam VR [J]. Journal of System Simulation, 2022, 34(6): 1312-1319. |
[2] | Na Ni, Kunjin He, Xincheng Zhu, Zhengming Chen. Research on Parametric Modeling and Deformation Method of Human Muscle [J]. Journal of System Simulation, 2022, 34(5): 1109-1117. |
[3] | Pengfei Gu, Lin Zhang, Zhen Chen, Junjie Ye. Collaborative Design and Simulation Integrated Method of Civil Aircraft Take-off Scenarios Based on X Language [J]. Journal of System Simulation, 2022, 34(5): 929-943. |
[4] | Wenzheng Liu, Heming Zhang. A Cyber-physical Integrated Modeling Method Oriented for Motion Simulation of Complex Systems [J]. Journal of System Simulation, 2022, 34(5): 954-963. |
[5] | Qingquan Lin, Jiaran Yang, Heming Zhang. A DEVS-based Formal Description Method for Complex Product Behavior Models [J]. Journal of System Simulation, 2022, 34(4): 661-669. |
[6] | Guoqiang Shi, Zewei Liu, Tingyu Lin, Zhao Xu, Xingyi Yang, Liqin Guo, Zhengxuan Jia. Open Cloud Architecture Design for Complex Product Modeling and Simulation System [J]. Journal of System Simulation, 2022, 34(3): 442-451. |
[7] | Xiaoan Sun, Xiaoli Luan, Fei Liu. Electronic Solid Waste Prediction Based on Intelligent Optimization Grey Model [J]. Journal of System Simulation, 2022, 34(3): 536-542. |
[8] | Lin Zhang, Kunyu Wang, Yuanjun Laili, Lei Ren. Modeling & Simulation based System of Systems Engineering [J]. Journal of System Simulation, 2022, 34(2): 179-190. |
[9] | Feng Li, Ying Wei. Product Decisions in Presence of Social Learning and Reference Point Effect [J]. Journal of System Simulation, 2022, 34(2): 234-246. |
[10] | Yongzhi Wang, Zhenchao Li, Pengyu Liu, Hui Wang. LOD Modeling Method for Three-Dimensional Objects with Energy Operator [J]. Journal of System Simulation, 2022, 34(2): 247-257. |
[11] | Song Gao, Xue Yin, Jiantao Xu, Yuhao Miao. Research on Design Method for Transfer Function of DC/DC Converter System Based on Frequency Domain Method [J]. Journal of System Simulation, 2022, 34(2): 334-341. |
[12] | Fan Changjia, Du Yanqiu, Liang Di, Hu Kai, Huang Jiayan. Modeling and Simulation of Emergency Medical Resources Allocation in Shanghai during COVID-19 [J]. Journal of System Simulation, 2022, 34(1): 93-103. |
[13] | Zhang Luan, Luo Zhengjun, Zhou Dequn. Agent- based Research on Power Absorption Simulation Analysis of Renewable Energy [J]. Journal of System Simulation, 2022, 34(1): 170-178. |
[14] | Hu Xiaofeng, Qi Dawei. Intelligent Wargaming System: Change Needed by Next Generation Need to be Changed [J]. Journal of System Simulation, 2021, 33(9): 1997-2009. |
[15] | Si Guangya, Wang Yanzheng. Challenges and Reflection on Next-generation Large-scale Computer Wargame System [J]. Journal of System Simulation, 2021, 33(9): 2010-2016. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||