系统仿真学报 ›› 2025, Vol. 37 ›› Issue (11): 2839-2852.doi: 10.16182/j.issn1004731x.joss.25-0476

• 论文 • 上一篇    

基于注意力与分层特征的图像特征点匹配算法

陈娜1, 白佳佳1, 周祺胤2, 李佳霖3   

  1. 1.湖北大学 数学与统计学学院,湖北 武汉 430062
    2.广东省人工智能与先进计算研究院 广州市智能驾驶视觉感知重点实验室,广东 广州 510535
    3.华北电力大学 系统优化与决策科学研究所,北京 100096
  • 收稿日期:2025-05-26 修回日期:2025-10-07 出版日期:2025-11-18 发布日期:2025-11-27
  • 通讯作者: 李佳霖
  • 第一作者简介:陈娜(1984-),女,副教授,博士,研究方向为机器学习及模式识别。

Image Feature Point Matching Algorithm Based on Attention and Hierarchical Features

Chen Na1, Bai Jiajia1, Zhou Qiyin2, Li Jialin3   

  1. 1.School of Mathematics and Statistics, Hubei University, Wuhan 430062, China
    2.Guangdong Provincial Institute of Artificial Intelligence and Advanced Computing, Guangzhou Key Laboratory of Visual Perception for Intelligent Driving, Guangzhou 510535, China
    3.Institute of System Optimization and Decision Science, North China Electric Power University, Beijing 100096, China
  • Received:2025-05-26 Revised:2025-10-07 Online:2025-11-18 Published:2025-11-27
  • Contact: Li Jialin

摘要:

特征点检测与匹配是智能驾驶领域的核心技术之一,针对现有算法提取到的特征点一致性与连续性不足,以及匹配时容易忽略上下文语义信息等问题,本研究提出了一种基于注意力与分层特征的图像特征点匹配算法(image feature point matching algorithm based on attention and hierarchical features,AHMF)。在特征点检测阶段提出了差异交互注意力模块(differential interaction attention module,DIAM),增强模型对突出区域的关注度,从而提高特征点的鲁棒性;引入分层特征增强模块(hierarchical feature enhancement module,HFEM),通过语义特征增强分支和跨尺度特征增强分支共同提取特征图中的层次化信息,提高描述符的鉴别性;在特征点匹配阶段,优化传统互最近邻匹配(mutual Nearest Neighbor,MNN)算法,提出一种多帧图像特征点匹配方法,筛选出稳定的特征点实验结果表明:对比D2-Net、R2D2等算法,本研究所提算法在两个公共数据集上匹配准确率更高,具有较小的参数量,同时展现出良好的抗噪声干扰能力。

关键词: 特征点检测, 关键点, 注意力机制, 特征点匹配, 语义信息

Abstract:

Feature point detection and matching is one of the core technologies in the field of intelligent driving. Aiming at the lack of consistency and continuity of feature points extracted by the existing algorithms, as well as the problem of easily ignoring the contextual semantic information when matching, this paper proposes an image feature point matching algorithm based on attention and hierarchical features (AHMF). In the feature point detection stage, differential interaction attention module (DIAM) is proposed to enhance the model's attention to the salient regions so as to improve the robustness of the feature points; further introduction of hierarchical feature enhancement module (HFEM), which extracts the hierarchical information in the feature map through the semantic feature enhancement branch and the cross-scale feature enhancement branch to improve the discriminative nature of the descriptors; in the feature point matching stage, the traditional mutual neighbor matching (MNN) algorithm is optimized, and a multi-frame image feature point matching method to screen out stable feature points. Experimental results show that compared with D2-Net, R2D2 and other algorithms, the proposed algorithm has a higher matching accuracy on the two public datasets, has a smaller number of parameters, and shows a good anti-noise interference ability.

Key words: feature point detection, keypoints, attention mechanism, feature point matching, semantic information

中图分类号: