系统仿真学报 ›› 2025, Vol. 37 ›› Issue (11): 2826-2838.doi: 10.16182/j.issn1004731x.joss.24-0704

• 论文 • 上一篇    

基于GRU-模拟退火的公共建筑自校准客流仿真及空间优化研究

许璟琳1,2, 陈芊茹2, 彭阳2, 余芳强3   

  1. 1.浙江大学 工程师学院,浙江 杭州 310015
    2.上海建工四建集团有限公司,上海 201103
    3.上海建工集团股份有限公司,上海 200080
  • 收稿日期:2024-07-02 修回日期:2024-11-08 出版日期:2025-11-18 发布日期:2025-11-27
  • 通讯作者: 陈芊茹
  • 第一作者简介:许璟琳(1989-),女,高工,博士,研究方向为数字孪生技术、计算机仿真与应用。
  • 基金资助:
    上海市青年科技启明星计划(21QB1403000);上海市国资委能级提升项目(2022008)

Self-calibrating Passenger Flow Simulation and Spatial Optimization for Public Building Based on GRU-SA

Xu Jinglin1,2, Chen Qianru2, Peng Yang2, Yu Fangqiang3   

  1. 1.Polytechnic Institute, Zhejiang University, Hangzhou 310015, China
    2.Shanghai Construction No. 4 (Group) Co. , Ltd. , Shanghai 201103, China
    3.Shanghai Construction Group Co. , Ltd. , Shanghai 200080, China
  • Received:2024-07-02 Revised:2024-11-08 Online:2025-11-18 Published:2025-11-27
  • Contact: Chen Qianru

摘要:

实时、精准的客流仿真为公共建筑设施资源的优化配置及空间布局的合理性提供了重要的数据支撑。提出了一种基于GRU-SA算法的公共建筑自校准客流仿真与空间优化方法。使用Anylogic构建包含空间结构与流线的仿真模型。基于GRU-SA算法设计了一种自校准的公共建筑客流仿真方法,并应用于上海市某医院门诊部的客流仿真,通过与实际数据的对比验证了该方法的有效性。针对仿真过程中发现的客流拥堵问题,提出了空间布局优化方案,并对优化结果进行了可视化展示,构建了优化指标体系以评价优化效果。实际应用表明:该方法能够有效识别公共建筑空间设施布局中的瓶颈问题。在实施有针对性的布局优化方案后,排队时间减少了24.14%,设施的服务水平得到显著提升,客流密度降低了58.93%,有效缓解了客流聚集风险,降低了整体感染隐患。

关键词: 公共建筑, 客流仿真, 空间布局优化, 自校准, 模拟退火, GRU神经网络

Abstract:

Real-time and precise passenger flow simulation provides critical data support for the optimal allocation of resources in public building facilities and the rational design of spatial layouts. This study proposed a self-calibrating passenger flow simulation and spatial optimization method for public buildings based on the GRU-simulated annealing algorithm. A simulation model incorporating spatial structures and flow lines was constructed using Anylogic. A self-calibrating passenger flow simulation method for public buildingswas designed based on the GRU-simulated annealing algorithm and applied to the outpatient department of a hospital in Shanghai for passenger flow simulation. The effectiveness of the method was validated by comparing the simulation results with actual data. Spatial layout optimization schemes were proposed to address passenger flow congestion issues observed during the simulation, and the optimization results were visualized. An optimization metric systemwas developed to assess the effectiveness of the optimization. Practical application demonstrates that this method can effectively identify bottlenecks in the spatial layout of public building facilities. After implementing targeted layout optimization schemes, queuing time is reduced by 24.14%; the service level of the facilities is significantly improved, and passenger density is decreased by 58.93%, thereby mitigating passenger gathering risks and reducing overall infection hazards.

Key words: public building, passenger flow simulation, spatial layout optimization, self-calibrating, simulated annealing, GRU neural network

中图分类号: