系统仿真学报 ›› 2025, Vol. 37 ›› Issue (10): 2662-2671.doi: 10.16182/j.issn1004731x.joss.24-0380

• 论文 • 上一篇    

基于脉冲强化学习的连续运动控制仿真与优化

刘晓德, 郭宇飞, 陈元培, 周洁, 张瑀涵, 彭玮航, 马喆   

  1. 航天科工集团智能科技研究院有限公司,北京 100043
  • 收稿日期:2024-04-13 修回日期:2024-05-28 出版日期:2025-10-20 发布日期:2025-10-21
  • 通讯作者: 马喆
  • 第一作者简介:刘晓德(1991-),男,工程师,博士,研究方向为先进智能计算。
  • 基金资助:
    国家自然科学基金(12202413);国家自然科学基金(12202412)

Simulation and Optimization of Continuous Motion Control Based on Spiking Reinforcement Learning

Liu Xiaode, Guo Yufei, Chen Yuanpei, Zhou Jie, Zhang Yuhan, Peng Weihang, Ma Zhe   

  1. Intelligent Science & Technology Academy of CASIC, Beijing 100043, China
  • Received:2024-04-13 Revised:2024-05-28 Online:2025-10-20 Published:2025-10-21
  • Contact: Ma Zhe

摘要:

为了提高模型对多自由度连续运动控制的鲁棒性,提出了一种基于Actor-Critic强化学习框架和脉冲神经网络的智能运动控制算法。将Actor网格与脉冲群体编码融合,通过引入特征变换方法来提升模型训练的性能,借助Critic网格评估运动控制的优劣。结果表明:该方法相比其他强化学习算法奖励值平均提升了10%以上。仿真结果验证了该模型在提升多自由度连续控制性能方面的有效性。

关键词: 脉冲神经网络, 强化学习, 自主运动控制, 特征变换

Abstract:

To improve the model robustness for multi-degree-of-freedom continuous motion control, an intelligent motion control algorithm was proposed based on the Actor-Critic reinforcement learning framework and spiking neural networks. This algorithm integrateed the Actor network with spiking population coding and enhanced model training performance by introducing feature transformation methods. The Critic network was used to evaluate the effectiveness of the motion control. The results show that, compared to other reinforcement learning algorithms, the average reward value of this method increases by more than 10%. The simulation results validate the effectiveness of the model in improving multi-degree-of-freedom continuous control performance.

Key words: spiking neural network, RL, automatic motion control, feature transformation

中图分类号: