系统仿真学报 ›› 2025, Vol. 37 ›› Issue (10): 2652-2661.doi: 10.16182/j.issn1004731x.joss.24-0557

• 论文 • 上一篇    

基于SALR网络的双率采样非线性系统鲁棒辨识

蒋文彬1, 曹余庆2, 谢莉1, 杨慧中1   

  1. 1.江南大学 物联网工程学院,江苏 无锡 214122
    2.无锡爱德旺斯科技有限公司,江苏 无锡 214161
  • 收稿日期:2024-05-23 修回日期:2024-07-04 出版日期:2025-10-20 发布日期:2025-10-21
  • 通讯作者: 谢莉
  • 第一作者简介:蒋文彬(2000-),男,硕士生,研究方向为多率系统辨识。
  • 基金资助:
    国家重点研发计划(2022YFC3401302);中国博士后科学基金(2021M691276)

Robust Identification of Dual-rate Sampled Nonlinear Systems Based on SALR Network

Jiang Wenbin1, Cao Yuqing2, Xie Li1, Yang Huizhong1   

  1. 1.School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China
    2.Wuxi ATI Group Technology Co. , Ltd. , Wuxi 214161, China
  • Received:2024-05-23 Revised:2024-07-04 Online:2025-10-20 Published:2025-10-21
  • Contact: Xie Li

摘要:

针对具有复杂非线性特性且测量输出含有异常值的双率采样非线性系统,提出了一种基于自连接相邻反馈循环储备池(self-join adjacent-feedback loop reservoir,SALR)网络的鲁棒辨识算法。使用SALR网络对目标系统的非线性特性进行描述,并在网络的储备池中注入小波神经元以增强网络的记忆能力和非线性描述能力,将非线性系统辨识问题转化为网络输出权值矩阵的辨识问题;采用Huber损失构造准则函数引入误差阈值提高随机梯度辨识算法对异常值的鲁棒性。为解决双率采样引起的输出数据缺失问题,在输出权值矩阵的递推辨识过程中引入辅助模型辨识思想和交互估计理论用网络的估计输出值代替不可测输出并使用鲸鱼优化算法优化网络的超参数,进一步提高辨识精度。仿真结果验证了算法的有效性。

关键词: 双率采样, 鲁棒辨识, 非线性系统, 辅助模型, 循环神经网络, 鲸鱼优化算法

Abstract:

A robust identification algorithm based on the self-join adjacent-feedback loop reservoir (SALR) network was proposed for dual-rate sampled nonlinear systems with complex nonlinear characteristics and measurement outputs containing outliers. The SALR network was applied to describe the nonlinear characteristics of the target system, and wavelet neurons were injected into the reservoir to enhance its memory and nonlinear description capabilities. The identification problem of the nonlinear system was transformed into the identification problem of the network's output weight matrix. The Huber loss function was used to construct the criterion function, and an error threshold was introduced to improve the robustness of the stochastic gradient identification algorithm against outliers. To solve the problem of output data loss caused by dual-rate sampling, the concepts of auxiliary model identification and interaction estimation theory were introduced into the recursive identification process of the output weights, where the estimated outputs of the network were used to replace the unmeasured outputs. Moreover, the whale optimization algorithm was adopted to optimize the network's hyperparameters, further enhancing the identification accuracy. Numerical simulation results validate the effectiveness of the proposed algorithm.

Key words: dual-rate sampling, robust identification, nonlinear system, auxiliary model, recurrent neural network, whale optimization algorithm

中图分类号: