1 |
Velchev Stefan, Kolev Ivan, Ivanov Krasimir, et al. Empirical Models for Specific Energy Consumption and Optimization of Cutting Parameters for Minimizing Energy Consumption During Turning[J]. Journal of Cleaner Production, 2014, 80: 139-149.
|
2 |
Gu Wenbin, Li Zhuo, Chen Zeyu, et al. An Energy-consumption Model for Establishing an Integrated Energy-consumption Process in a Machining System[J]. Mathematical and Computer Modelling of Dynamical Systems, 2020, 26(6): 534-561.
|
3 |
钱军, 李欣然, 马亚辉, 等. 面向负荷建模的微型燃气轮机建模及其等效描述[J]. 电力系统自动化, 2010, 34(19): 81-85.
|
|
Qian Jun, Li Xinran, Ma Yahui, et al. Modeling and Equivalent Description of Microturbine for Load Modeling[J]. Automation of Electric Power Systems, 2010, 34(19): 81-85.
|
4 |
Abdulla Amin Aburomman, Mamun Bin Ibne Reaz. A Novel Weighted Support Vector Machines Multiclass Classifier Based on Differential Evolution for Intrusion Detection Systems[J]. Information Sciences, 2017, 414: 225-246.
|
5 |
李艳姣, 张森, 尹怡欣, 等. 基于数据驱动的高炉料面优化决策模型研究[J]. 控制理论与应用, 2018, 35(3): 324-334.
|
|
Li Yanjiao, Zhang Sen, Yin Yixin, et al. Research on Optimization Model of Blast Furnace Burden Surface Based on Data Driven[J]. Control Theory & Applications, 2018, 35(3): 324-334.
|
6 |
Somu Nivethitha, Gauthama Raman M R, Ramamritham Krithi. A Hybrid Model for Building Energy Consumption Forecasting Using Long Short Term Memory Networks[J]. Applied Energy, 2020, 261: 114131.
|
7 |
曾国治, 魏子清, 岳宝, 等. 基于CNN-RNN组合模型的办公建筑能耗预测[J]. 上海交通大学学报, 2022, 56(9): 1256-1261.
|
|
Zeng Guozhi, Wei Ziqing, Yue Bao, et al. Energy Consumption Prediction of Office Buildings Based on CNN-RNN Combined Model[J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1256-1261.
|
8 |
Qiao Junfei, Zhou Hongbiao. Modeling of Energy Consumption and Effluent Quality Using Density Peaks-based Adaptive Fuzzy Neural Network[J]. IEEE/CAA Journal of Automatica Sinica, 2018, 5(5): 968-976.
|
9 |
Yuan Xiaofeng, Ge Zhiqiang, Huang Biao, et al. A Probabilistic Just-in-time Learning Framework for Soft Sensor Development with Missing Data[J]. IEEE Transactions on Control Systems Technology, 2017, 25(3): 1124-1132.
|
10 |
宋月丽. 基于即时学习的工业生产过程质量预测建模方法研究[D]. 合肥: 合肥工业大学, 2020.
|
|
Song Yueli. Research on Just-in-time Learning Based Modeling Methods for Quality Prediction of Industrial Production Process[D]. Hefei: Hefei University of Technology, 2020.
|
11 |
施锦涛, 陈磊, 秦凯, 等. 基于时空相似性的即时学习在线建模[J]. 仪器仪表学报, 2022, 43(6): 185-193.
|
|
Shi Jintao, Chen Lei, Qin Kai, et al. Online Modeling of Just-in-time Learning Based on Spatial-temporal Similarity[J]. Chinese Journal of Scientific Instrument, 2022, 43(6): 185-193.
|
12 |
赵安, 刘辉, 陈甫刚, 等. 基于CJS-SLLE降维与即时学习的转炉炼钢终点碳温软测量方法[J]. 控制理论与应用, 2023, 40(10): 1839-1850.
|
|
Zhao An, Liu Hui, Chen Fugang, et al. Soft Measurement Method for End-point Carbon Temperature in Converter Steelmaking Based on CJS-SLLE Dimensionality Reduction and Real-time Learning[J]. Control Theory & Applications, 2023, 40(10): 1839-1850.
|
13 |
Yuan Xiaofeng, Zhou Jiao, Wang Yalin, et al. Multi-similarity Measurement Driven Ensemble Just-in-time Learning for Soft Sensing of Industrial Processes[J]. Journal of Chemometrics, 2018, 32(9): e3040.
|
14 |
张莹, 王耀南. 基于局部加权偏最小二乘法的冷凝器污垢预测[J]. 仪器仪表学报, 2010, 31(2): 299-304.
|
|
Zhang Ying, Wang Yaonan. Prediction of Condenser Fouling Based on Locally Weighted Partial Least Squares Regression Algorithm[J]. Chinese Journal of Scientific Instrument, 2010, 31(2): 299-304.
|
15 |
徐彬梓, 王艳, 纪志成. 基于实例的离散制造系统能耗知识建模与预测[J]. 控制与决策, 2019, 34(1): 9-17.
|
|
Xu Binzi, Wang Yan, Ji Zhicheng. Case-based Energy-consuming Knowledge Modeling and Prediction of Discrete Manufacturing System[J]. Control and Decision, 2019, 34(1): 9-17.
|
16 |
易诚明, 周平, 柴天佑. 基于即时学习的高炉炼铁过程数据驱动自适应预测控制[J]. 控制理论与应用, 2020, 37(2): 295-306.
|
|
Yi Chengming, Zhou Ping, Chai Tianyou. Data-driven Just-in-time Learning Based Adaptive Predictive Control for Blast Furnace Ironmaking[J]. Control Theory & Applications, 2020, 37(2): 295-306.
|
17 |
赵泉华, 王春畅, 李玉. 基于混合邻域约束项的改进FCM算法[J]. 控制与决策, 2021, 36(6): 1457-1464.
|
|
Zhao Quanhua, Wang Chunchang, Li Yu. Mixed Neighborhood Constraints Based Fuzzy C-means Algorithm[J]. Control and Decision, 2021, 36(6): 1457-1464.
|
18 |
Wang Guang, Yin Shen, Kaynak O. An LWPR-based Data-driven Fault Detection Approach for Nonlinear Process Monitoring[J]. IEEE Transactions on Industrial Informatics, 2014, 10(4): 2016-2023.
|
19 |
Wang Jiajun, Kumbasar Tufan. Parameter Optimization of Interval Type-2 Fuzzy Neural Networks Based on PSO and BBBC Methods[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6(1): 247-257.
|
20 |
Roy Pratik, Ghanshaym Singha Mahapatra, Kashi Nath Dey. Forecasting of Software Reliability Using Neighborhood Fuzzy Particle Swarm Optimization Based Novel Neural Network[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6(6): 1365-1383.
|
21 |
徐文婕, 朱光宇. 直觉模糊集相似度遗传算法求解多目标车间调度问题[J]. 控制理论与应用, 2019, 36(7): 1057-1066.
|
|
Xu Wenjie, Zhu Guangyu. Genetic Algorithm Based on Similarity of Intuitionistic Fuzzy sets for Many-objective Flow Shop Scheduling Problems[J]. Control Theory & Applications, 2019, 36(7): 1057-1066.
|
22 |
何庆, 吴意乐, 徐同伟. 改进遗传模拟退火算法在TSP优化中的应用[J]. 控制与决策, 2018, 33(2): 219-225.
|
|
He Qing, Wu Yile, Xu Tongwei. Application of Improved Genetic Simulated Annealing Algorithm in TSP Optimization[J]. Control and Decision, 2018, 33(2): 219-225.
|
23 |
刘瑞兰, 牟盛静, 苏宏业, 等. 基于支持向量机和粒子群算法的软测量建模[J]. 控制理论与应用, 2006, 23(6): 895-899, 906.
|
|
Liu Ruilan, Mu Shengjing, Su Hongye, et al. Modeling Soft Sensor Based on Support Vector Machine and Particle Swarm Optimization Algorithms[J]. Control Theory & Applications, 2006, 23(6): 895-899, 906.
|
24 |
薛明晨, 熊伟丽, 徐保国. 基于局部加权偏最小二乘的在线多模型建模[J]. 计算机应用研究, 2015, 32(10): 2981-2984, 2995.
|
|
Xue Mingchen, Xiong Weili, Xu Baoguo. Locally Weighted Partial Least Squares Based Online Soft Sensor Using Multi-model Method[J]. Application Research of Computers, 2015, 32(10): 2981-2984, 2995.
|
25 |
杨扬. 基于改进GEP的数控铣削过程物理建模及工艺参数优化方法研究[D]. 武汉: 华中科技大学, 2013.
|
|
Yang Yang. Improved GEP Based Physical Modeling and Process Parameters Optimization Methods for CNC Milling Process[D]. Wuhan: Huazhong University of Science and Technology, 2013.
|
26 |
Chen Weineng, Zhang Jun, Henry S H. Chung,et al. A Novel Set-based Particle Swarm Optimization Method for Discrete Optimization Problems[J]. IEEE Transactions on Evolutionary Computation, 2010, 14(2): 278-300.
|
27 |
Yuan Xiaofeng, Ge Zhiqiang, Huang Biao, et al. Semisupervised JITL Framework for Nonlinear Industrial Soft Sensing Based on Locally Semisupervised Weighted PCR[J]. IEEE Transactions on Industrial Informatics, 2017, 13(2): 532-541.
|
28 |
Venkata Vijayan S, Mohanta Hare K, Ajaya Kumar Pani. Adaptive Non-linear Soft Sensor for Quality Monitoring in Refineries Using Just-in-time Learning-generalized Regression Neural Network Approach[J]. Applied Soft Computing, 2022, 119: 108546.
|