系统仿真学报 ›› 2024, Vol. 36 ›› Issue (5): 1189-1198.doi: 10.16182/j.issn1004731x.joss.22-1550

• 研究论文 • 上一篇    下一篇

基于密度峰值聚类的Tri-training算法

罗宇航1(), 吴润秀1, 崔志华2, 张翼英3, 何业慎4, 赵嘉1()   

  1. 1.南昌工程学院 信息工程学院,江西 南昌 330099
    2.太原科技大学 计算机科学与技术学院,山西 太原 030024
    3.天津科技大学 人工智能学院,天津 300457
    4.深圳市国电科技通信有限公司,广东 深圳 518000
  • 收稿日期:2022-12-29 修回日期:2023-03-11 出版日期:2024-05-15 发布日期:2024-05-21
  • 通讯作者: 赵嘉 E-mail:1658051291@qq.com;zhaojia925@163.com
  • 第一作者简介:罗宇航(1997-),男,硕士生,研究方向为数据挖掘。E-mail:1658051291@qq.com
  • 基金资助:
    国家自然科学基金(52069014)

Tri-training Algorithm Based on Density Peaks Clustering

Luo Yuhang1(), Wu Runxiu1, Cui Zhihua2, Zhang Yiying3, He Yeshen4, Zhao Jia1()   

  1. 1.School of Information Engineering, Nanchang Institute of Technology, Nanchang 330099, China
    2.College of Computer Science and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China
    3.College of Artificial Intelligence, Tianjin University of Science & Technology, Tianjin 300457, China
    4.China Gridcom Co. , Ltd. , Shenzhen 518000, China
  • Received:2022-12-29 Revised:2023-03-11 Online:2024-05-15 Published:2024-05-21
  • Contact: Zhao Jia E-mail:1658051291@qq.com;zhaojia925@163.com

摘要:

Tri-training利用无标签数据进行分类可有效提高分类器的泛化能力,但其易将无标签数据误标,从而形成训练噪声。提出一种基于密度峰值聚类的Tri-training(Tri-training with density peaks clustering,DPC-TT)算法。密度峰值聚类通过类簇中心和局部密度可选出数据空间结构表现较好的样本。DPC-TT算法采用密度峰值聚类算法获取训练数据的类簇中心和样本的局部密度,对类簇中心的截断距离范围内的样本认定为空间结构表现较好,标记为核心数据,使用核心数据更新分类器,可降低迭代过程中的训练噪声,进而提高分类器的性能。实验结果表明:相比于标准Tri-training算法及其改进算法,DPC-TT算法具有更好的分类性能。

关键词: Tri-training, 半监督学习, 密度峰值聚类, 空间结构, 分类器

Abstract:

Tri-training can effectively improve the generalization ability of classifiers by using unlabeled data for classification, but it is prone to mislabeling unlabeled data, thus forming training noise. Tri-training (Tri-training with density peaks clustering, DPC-TT) algorithm based on density peaks clustering is proposed. The DPC-TT algorithm uses the density peaks clustering algorithm to obtain the class cluster centers and local densities of the training data, and the samples within the truncation distance of the class cluster centers are identified as the samples with better spatial structure, and these samples are labeled as the core data, and the classifier is updated with the core data, which can reduce the training noise during the iteration to improve the performance of the classifier. The experimental results show that the DPC-TT algorithm has better classification performance compared with the standard Tri-training algorithm and its improvement algorithm.

Key words: Tri-training, semi-supervised learning, density peaks clustering, spatial structure, classifier

中图分类号: