系统仿真学报 ›› 2025, Vol. 37 ›› Issue (11): 2768-2777.doi: 10.16182/j.issn1004731x.joss.24-0639

• 论文 • 上一篇    

面向城市物流配送的车辆路径优化算法研究

马振鹏1,2, 焦晗暘1, 张哲1,2, 刘成1,2, 姜博1,2, 汪霖1,2   

  1. 1.西北大学 信息科学与技术学院,陕西 西安 710127
    2.生成式人工智能与混合现实陕西省高等学校重点实验室,陕西 西安 710127
  • 收稿日期:2024-06-15 修回日期:2024-09-04 出版日期:2025-11-18 发布日期:2025-11-27
  • 通讯作者: 刘成
  • 第一作者简介:马振鹏(2000-),男,硕士生,研究方向为群体智能优化、多任务优化。
  • 基金资助:
    国家自然科学基金(42271140);陕西省重点研发计划(2024GX-YBXM-149)

Research on Vehicle Path Optimization Algorithms for Urban Logistics and Distribution

Ma Zhenpeng1,2, Jiao Hanyang1, Zhang Zhe1,2, Liu Cheng1,2, Jiang Bo1,2, Wang Lin1,2   

  1. 1.State-Province Joint Engineering and Research Center of Advanced Networking and Intelligent Information Services, School of Information Science and Technology, Northwest University, Xi'an 710127, China
    2.Shaanxi Key Laboratory of Higher Education Institution of Generative Artificial Intelligence and Mixed Reality, Xi'an 710127, China
  • Received:2024-06-15 Revised:2024-09-04 Online:2025-11-18 Published:2025-11-27
  • Contact: Liu Cheng

摘要:

针对现有优化算法在求解带时间窗的车辆路径问题(vehicle routing problem with time windows, VRPTW)时存在易陷入局部最优解和收敛速度慢等问题,提出了一种基于K均值聚类和改进大规模邻域搜索算法(K-means clustering algorithm and improved large neighborhood search algorithm, K-means-ILNSA)。采用先聚类后优化的策略,利用K-means算法对待配送客户进行分组,以提高优化效率。采用遗传算法对聚类产生的每组客户进行单独优化,以初步规划配送路径。引入大规模邻域搜索(large neighborhood search, LNS)算法对配送路径进一步优化,以有效避免算法陷入局部最优解。实验结果表明:所提算法能够有效解决带时间窗的车辆路径问题,其生成的车辆总路程短,优化求解效率高。

关键词: 带时间窗的车辆路径问题, 遗传算法, K-means聚类, 大规模邻域搜索算法

Abstract:

Existing optimization algorithms for solving the vehicle routing problem with time windows (VRPTW) are prone to fall into local optimal solutions and have slow convergence speed. To address this issue, a K-means clustering algorithm and improved large neighborhood search algorithm (K-means-ILNSA) was proposed. A strategy of clustering before optimization was adopted, and the K-means algorithm was adopted to group the customers to be delivered, so as to improve the optimization efficiency. The genetic algorithm was adopted to optimize each group of customers generated by clustering separately to initially plan the distribution routes. The large neighborhood search (LNS) algorithm was introduced to further optimize the delivery routes, effectively avoiding the algorithm getting trapped in local optimal solutions. Experimental results show that the proposed algorithm can effectively solve the vehicle path problem with time windows, and the generated total distance of vehicle is short. The solving efficiency after optimization is high.

Key words: vehicle routing problem with time window(VRPTW), genetic algorithm, K-means clustering, large neighborhood search

中图分类号: