系统仿真学报 ›› 2018, Vol. 30 ›› Issue (12): 4649-4658.doi: 10.16182/j.issn1004731x.joss.201812020

• 仿真系统与技术 • 上一篇    下一篇

基于模拟植物生长算法的云作业调度模型

李强1,2, 刘晓峰3,*   

  1. 1.太原理工大学 财经学院,太原 030024;
    2.山西省财政税务专科学校 信息学院,太原 030024;
    3.太原理工大学 大数据学院,太原 030024
  • 收稿日期:2018-05-05 修回日期:2018-07-14 出版日期:2018-12-10 发布日期:2019-01-03
  • 通讯作者: 刘晓峰(1979-),男,山西怀仁,博士,研究方向为云计算。
  • 作者简介:李强(1980-),男,山西太原,硕士,副教授,高工,研究方向为植物生算法。
  • 基金资助:
    国家自然科学基金(61502330), 山西省高等学校科技创新项目(20171119), 山西省软科学计划 (2016041008-5)

Cloud Job Scheduling Model Based on Improved Plant Growth Algorithm

Li Qiang1,2, Liu Xiaofeng3,*   

  1. 1.Department of Information, College of Finance & Economics, Tai yuan University of Technology, Taiyuan 030024, China;
    2.College of Information, Shanxi Finance &Taxation College, Taiyuan 030024, China;
    3. College of Data Science, Taiyuan University of Technology, Taiyuan 030024, China
  • Received:2018-05-05 Revised:2018-07-14 Online:2018-12-10 Published:2019-01-03

摘要: 云作业的调度算法的优良对整个云系统的工作效率具有重要意义。首先,找出影响云作业调度的关键因素,建立资源约束模型;随后,通过植物生长规律的Logistic模型来改进现有的模拟植物生长算法,使其生长依据能量动力改变植物生长的方式;最后,通过4种不同的植物模型进行比较,分析其不同特点,并与6个典型的云作业调度算法比较,得出结论:基于Logistic模型改进的模拟植物生长算法具有更好的作业调度效率。

关键词: Hadoop, 云计算, 调度, 模拟植物生长算法, MapReduce

Abstract: The performance of cloud job scheduling algorithm has a great importance to the whole cloud system. The key factors that affect cloud operation scheduling are found out, and a resource constraint model is established. The existing simulation plant growth algorithm is improved based on the Logistic model of plant growth law, so that the plant growth way was made to change according to the energy power. The comparison of four different plant models was carried out and their different features were analyzed. Compared with 6 typical cloud job scheduling algorithms, it is concluded that the improved simulation plant growth algorithm based on Logistic model has better job scheduling efficiency.

Key words: Hadoop, cloud computing, scheduling, plant growth simulation algorithm, MapReduce

中图分类号: