| [1] |
International Renewable Energy Agency. Renewable Capacity Statistics 2025[EB/OL]. [2025-04-15]. .
|
| [2] |
林超凡, 别朝红. 新型电力系统不确定性静态建模及量化分析方法评述[J]. 电力系统自动化, 2024, 48(19): 14-27.
|
|
Lin Chaofan, Bie Zhaohong. Review of Static Modeling and Quantitative Analysis Methods for Uncertainties of New Power Systems[J]. Automation of Electric Power Systems, 2024, 48(19): 14-27.
|
| [3] |
江昌旭, 郭辰, 刘晨曦, 等. 基于深度强化学习的主动配电网动态重构综述[J]. 高电压技术, 2025, 51(4): 1801-1816.
|
|
Jiang Changxu, Guo Chen, Liu Chenxi, et al. Review of Active Distribution Network Dynamic Reconfiguration Based on Deep Reinforcement Learning[J]. High Voltage Engineering, 2025, 51(4): 1801-1816.
|
| [4] |
Saglam Baturay, Furkan Burak Mutlu, Dogan Can Cicek, et al. Parameter-free Reduction of the Estimation Bias in Deep Reinforcement Learning for Deterministic Policy Gradients[J]. Neural Processing Letters, 2024, 56(2): 80.
|
| [5] |
彭刘阳, 孙元章, 徐箭, 等. 基于深度强化学习的自适应不确定性经济调度[J]. 电力系统自动化, 2020, 44(9): 33-42.
|
|
Peng Liuyang, Sun Yuanzhang, Xu Jian, et al. Self-adaptive Uncertainty Economic Dispatch Based on Deep Reinforcement Learning[J]. Automation of Electric Power Systems, 2020, 44(9): 33-42.
|
| [6] |
赵鹏杰, 吴俊勇, 王燚, 等. 基于深度强化学习的微电网优化运行策略[J]. 电力自动化设备, 2022, 42(11): 9-16.
|
|
Zhao Pengjie, Wu Junyong, Wang Yi, et al. Optimal Operation Strategy of Microgrid Based on Deep Reinforcement Learning[J]. Electric Power Automation Equipment, 2022, 42(11): 9-16.
|
| [7] |
Fujimoto Scott, van Hoof Herke, Meger David. Addressing Function Approximation Error in Actor-critic Methods[EB/OL]. (2018-10-22) [2025-04-18]. .
|
| [8] |
陈实, 朱亚斌, 刘艺洪, 等. 基于世界模型深度强化学习的含风电电力系统低碳经济调度[J]. 电网技术, 2024, 48(8): 3143-3154.
|
|
Chen Shi, Zhu Yabin, Liu Yihong, et al. Low-carbon Economic Dispatch of Wind-containing Power Systems Based on World Model Deep Reinforcement Learning[J]. Power System Technology, 2024, 48(8): 3143-3154.
|
| [9] |
李志军, 徐博, 张家安, 等. 基于TD3可变长度时间窗口最优加权的短期负荷预测策略[J]. 电力建设, 2024, 45(6): 140-148.
|
|
Li Zhijun, Xu Bo, Zhang Jiaan, et al. Short-term Load Optimal Weighted Forecasting Strategy Based on TD3 Variable Length Time Window[J]. Electric Power Construction, 2024, 45(6): 140-148.
|
| [10] |
张磊光, 陈海涛, 杨军. 基于SAC算法的含柔性负荷电-气互联系统的频率与气压协调控制策略[J]. 智慧电力, 2024, 52(4): 8-14.
|
|
Zhang Leiguang, Chen Haitao, Yang Jun. Frequency-pressure Coordinated Control Strategy of Electrical-gas Interconnection System Based on SAC Algorithm[J]. Smart Power, 2024, 52(4): 8-14.
|
| [11] |
李鑫伟, 陈彬剑, 于明志, 等. 基于多目标优化的多能互补冷热电联产系统运行优化研究[J]. 热力发电, 2024, 53(7): 73-81.
|
|
Li Xinwei, Chen Binjian, Yu Mingzhi, et al. Research on Operation Optimization of Multi-energy Complementary Cogeneration System Based on Multi-objective Optimization[J]. Thermal Power Generation, 2024, 53(7): 73-81.
|
| [12] |
曾朝晖, 赵会勇, 罗恩韬, 等. 基于自适应混合优化的电力数据预测方法[J]. 控制与决策, 2023, 38(12): 3490-3498.
|
|
Zeng Zhaohui, Zhao Huiyong, Luo Entao, et al. Power Data Forecasting Method Based on Adaptive Hybrid Optimization[J]. Control and Decision, 2023, 38(12): 3490-3498.
|
| [13] |
李练兵, 高国强, 吴伟强, 等. 考虑特征重组与改进Transformer的风电功率短期日前预测方法[J]. 电网技术, 2024, 48(4): 1466-1476.
|
|
Li Lianbing, Gao Guoqiang, Wu Weiqiang, et al. Short-term Day-ahead Wind Power Prediction Considering Feature Recombination and Improved Transformer[J]. Power System Technology, 2024, 48(4): 1466-1476.
|
| [14] |
王兴国, 程琪, 于溯. 利用电压变化特征的识别电力系统振荡的方法[J]. 高电压技术, 2024, 50(10): 4655-4661.
|
|
Wang Xingguo, Cheng Qi, Yu Su. Method for Identifying Power System Swing by Using Voltage Variation Characteristics[J]. High Voltage Engineering, 2024, 50(10): 4655-4661.
|
| [15] |
蔺伟山, 王小君, 孙庆凯, 等. 不确定性环境下基于深度强化学习的综合能源系统动态调度[J]. 电力系统保护与控制, 2022, 50(18): 50-60.
|
|
Lin Weishan, Wang Xiaojun, Sun Qingkai, et al. Dynamic Dispatch of an Integrated Energy System Based on Deep Reinforcement Learning in an Uncertain Environment[J]. Power System Protection and Control, 2022, 50(18): 50-60.
|
| [16] |
杨珺, 吴飞业. 基于双鱼群算法的电力系统无功优化[J]. 控制与决策, 2018, 33(10): 1886-1892.
|
|
Yang Jun, Wu Feiye. Reactive Power Optimization of Power System Based on Double Fish-swarm Algorithm[J]. Control and Decision, 2018, 33(10): 1886-1892.
|
| [17] |
吕凯, 毛荀, 乔咏田, 等. 电网调度中基于深度学习的实时优化方法研究[J]. 电工技术, 2024(增2): 402-405.
|
|
Kai Lü, Mao Xun, Qiao Yongtian, et al. Research on Real-time Optimization Method Based on Deep Learning in Power Grid Scheduling[J]. Electric Engineering, 2024(S2): 402-405.
|
| [18] |
谭洪, 陈嘉迅, 王秋杰, 等. 计及风电频率支撑能力和运行风险的鲁棒机组组合模型[J]. 电力系统保护与控制, 2025, 53(4): 96-107.
|
|
Tan Hong, Chen Jiaxun, Wang Qiujie, et al. A Robust Unit Commitment Model Considering Wind Power Frequency Support Capability and Operational Risk[J]. Power System Protection and Control, 2025, 53(4): 96-107.
|
| [19] |
高琴, 徐光虎, 夏尚学, 等. 基于深度强化学习的电力系统紧急切机稳控策略生成方法[J]. 电力科学与技术学报, 2025, 40(1): 39-46.
|
|
Gao Qin, Xu Guanghu, Xia Shangxue, et al. Policy Generation Method for Power System Stability Control During Emergent Tripping of Unit Based on Deep Reinforcement Learning[J]. Journal of Electric Power Science and Technology, 2025, 40(1): 39-46.
|
| [20] |
Schulman J, Wolski F, Dhariwal P, et al. Proximal Policy Optimization Algorithms[EB/OL]. (2017-08-28) [2025-03-19]. .
|
| [21] |
Bai Shaojie, Kolter J Z, Koltun V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling[EB/OL]. (2018-04-19) [2025-03-19]. .
|