系统仿真学报 ›› 2020, Vol. 32 ›› Issue (7): 1279-1286.doi: 10.16182/j.issn1004731x.joss.19-VR0473
蔡兴泉, 涂宇欣, 葛亚坤, 杨哲
收稿日期:2019-08-30
修回日期:2019-11-18
出版日期:2020-07-25
发布日期:2020-07-15
第一作者简介:蔡兴泉(1980-),男,山东,博士,教授,研究方向为虚拟现实、人机互动;涂宇欣(1994-),女,内蒙古,硕士生,研究方向为虚拟现实。
Cai Xingquan, Tu Yuxin, Ge Yakun, Yang Zhe
Received:2019-08-30
Revised:2019-11-18
Online:2020-07-25
Published:2020-07-15
摘要: 针对传统叶片识别易受环境干扰,难以实现复杂背景下的多叶片实时识别问题,提出一种基于CNN网络和多任务损失函数的实时叶片识别方法。采用CNN网络提取叶片图像特征图,输入到RPN网络生成区域候选框;依据特征图和区域候选框,提取候选框特征图,分别进行叶片分类和边界框回归,预测叶片类别和叶片预测框的定位;利用多任务损失函数约束分类和回归,来提高叶片分类和回归的准确率和运算速度。实验结果表明,该方法的平均实时叶片识别准确率为91.8%,平均实时识别速度为25 fps。
中图分类号:
蔡兴泉,涂宇欣,葛亚坤等 . 基于CNN网络和多任务损失函数的实时叶片识别[J]. 系统仿真学报, 2020, 32(7): 1279-1286.
Cai Xingquan,Tu Yuxin,Ge Yakun,et al . Real-time Leaf Recognition Method Based on CNN Network and Multi-task Loss Function[J]. Journal of System Simulation, 2020, 32(7): 1279-1286.
| [1] | 张宁, 刘文萍. 基于图像分析的植物叶片识别技术综述[J]. 计算机应用研究, 2011, 28(11): 4001-4007.Zhang Ning, Liu Wenping.Plant Leaf Recognition Technology Based on Image Analysis[J]. Application Research of Computers, 2011, 28(11): 4001-4007. |
| [2] | Hu J, Chen Z B, Yang M, et al.A Multi-Scale Fusion Convolutional Neural Network for Plant Leaf Recognition[J]. IEEE Signal Processing Letters (S1070-9908), 2018, 25(6): 853-857. |
| [3] | 杨天天, 潘晓星, 穆立蔷. 基于叶片图像特征数字化信息识别7种柳属植物[J]. 东北林业大学学报, 2014, 42(12): 75-79.Yang Tiantian, Pan Xiaoxing, Mu Liqiang.Identification of Seven Salix Species Using Digital Information Analysis of Leaf Image Characteristics[J]. Journal of Northeast Forestry University, 2014, 42(12): 75-79. |
| [4] | 刘骥, 曹凤莲, 甘林昊. 基于叶片形状特征的植物识别方法[J]. 计算机应用, 2016, 36(S2): 200-202, 206.Liu Ji, Cao Fenglian, Gan Linhao.Plant Identification Method Based on Leaf Shape Features[J]. Journal of Computer Applications, 2016, 36(S2): 200-202, 206. |
| [5] | 邹秋霞, 郜鲁涛, 盛立冲. 基于Android手机和图像特征识别技术的植物叶片分类系统的研究[J]. 安徽农业科学, 2015, 43(11): 367-369.Zou Qiuxia, Gao Lutao, Sheng Lichong.Study on Plant Leaves Classification System Based on Android Mobile Phone and Image Feature Recognition Technology[J]. Journal of Anhui Agricultural Sciences, 2015, 43(11): 367-369. |
| [6] | Thanikkal J G, Dubey A K, Thomas M T.Whether color, shape and texture of leaves are the key features for image processing based plant recognition? An analysis![C]// 2017 Recent Developments in Control, Automation & Power Engineering(RDCAPE). Piscataway, NJ: IEEE, 2017: 404-409. |
| [7] | Munisami T, Ramsurn M, Kishnah S, et al.Plant Leaf Recognition Using Shape Features and Colour Histogram with K-nearest Neighbour Classifiers[J]. Procedia Computer Science (S1877-0509), 2015, 58: 740-747. |
| [8] | Srivastava V, Khunteta A.Comparative Analysis of Leaf Classification and Recognition by different SVM Classifiers[C]// 2018 International Conference on Inventive Research in Computing Applications(ICIRCA). Piscataway, NJ: IEEE, 2018: 626-631. |
| [9] | 叶继华, 时淑霞, 李汉曦. 基于深度学习的驾驶关注区域检测方法研究[J]. 系统仿真学报, 2019, 31(7): 1421-1428.Ye Jihua, Shi Shuxia, Li Hanxi.Research and Implementation of Driving Concern Area Detection Based on Deep Learning[J]. Journal of System Simulation, 2019, 31(7): 1421-1428. |
| [10] | Reyes A K, Caicedo J C, Camargo J E.Fine-tuning Deep Convolutional Networks for Plant Recognition[J]. CLEF(Working Notes), 2015, 1391: 467-475. |
| [11] | 杜兰, 刘斌, 王燕. 基于卷积神经网络的SAR图像目标检测算法[J]. 电子与信息学报, 2016, 38(12): 3018-3025.Du Lan, Liu Bin, Wang Yan.Target Detection Method Based on Convolutional Neural Network for SAR Image[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3018-3025. |
| [12] | 吴昀璞, 金炜东, 黄颖坤. 基于多域融合 CNN 的高速列车转向架故障检测[J]. 系统仿真学报, 2018, 30(11): 4492-4497.Wu Yunpu, Jin Weidong, Huang Yingkun.Fault Diagnosis of High Speed Train Bogie Based on Multi-domain Fusion CNN[J]. Journal of System Simulation, 2018, 30(11): 4492-4497. |
| [13] | 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251.Zhou Feiyan, Jin Linpeng, Dong Jun.Review of Convolutional Neural Network[J]. Chinese Journal of Computers, 2017, 40(6): 1229-1251. |
| [14] | 刘晶晶. 基于深度网络特征学习的植物叶片识别算法研究与实现[D]. 深圳: 深圳大学硕士论文, 2017.Liu Jingjing.Research and Implementation of Plant Leaf Recognition Algorithm Based on Deep Network Feature Learning[D]. Shenzhen: Shenzhen University, Master thesis, 2017. |
| [15] | 张帅, 淮永建. 基于分层卷积深度学习系统的植物叶片识别研究[J]. 北京林业大学学报, 2016, 38(9): 108-115.Zhang Shuai, Huai Yongjian.Leaf Image Recognition Based on Layered Convolutions Neural Network Deep Learning[J]. Journal of Beijing Forestry University, 2016, 38(9): 108-115. |
| [16] | Uijlings J R R, van de Sande K E A, Gevers T. Selective Search for Object Recognition[J]. International Journal of Computer Vision (S1573-1405), 2013, 104(2): 154-171. |
| [17] | Chen M Y, Tang Y C, Zou X J.High-accuracy multi-camera reconstruction enhanced by adaptive point cloud correction algorithm[J]. Optics and Lasers in Engineering. Optics and Lasers in Engineering (S0143-8166), 2019, 122: 170-183. |
| [18] | Lin G C, Tang Y C, Zou X J.In-field citrus detection and localisation based on RGB-D image analysis[J]. Biosystems Engineering (S1537-5110), 2019, 186: 34-44. |
| [19] | Girshick R, Donahue J, Darrelland T, et al.Rich Feature Hierarchies for Object Detection and Semantic Segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2014. |
| [20] | 曹诗雨, 刘跃虎, 李辛昭. 基于Fast R-CNN的车辆目标检测[J]. 中国图象图形学报, 2017, 22(5): 671-677.Cao Shiyu, Liu Yuehu, Li Xinzhao.Vehicle detection method based on fast R-CNN[J]. Journal of Image and Graphics, 2017, 22(5): 671-677. |
| [21] | Girshick R.Fast R-CNN[C]. Proceedings of the IEEE international conference on computer vision. Piscataway, NJ: IEEE, 2015: 1440-1448. |
| [22] | Redmon J, Divvala S, Girshick R, et al.You Only Look Once: Unified, Real-Time Object Detection[C]. Proceedings of the IEEE conference on computer vision and pattern recognition. Piscataway, NJ: IEEE, 2016: 779-788. |
| [23] | 王全东, 常天庆, 张雷. 面向多尺度坦克装甲车辆目标检测的改进Faster R-CNN算法[J]. 计算机辅助设计与图形学学报, 2018, 30(12): 2278-2291.Wang Quandong, Chang Tianqing, Zhang Lei.An Improved Faster R-CNN Algorithm for Detection of Multi-scale Tank Armored Vehicle Targets[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(12): 2278-2291. |
| [24] | Ren S Q, He K M, Girshick R, et al.Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 2015, 39(6): 1137-1149. |
| [1] | 黄涛, 张智, 丁玉杰, 陈艳波, 王晶, 张文倩. 考虑动态频率安全与N-k故障的鲁棒应急调度方法[J]. 系统仿真学报, 2025, 37(12): 2981-2993. |
| [2] | 张润昭, 陈艳波, 黄涛, 田昊欣, 强涂奔, 张智. 基于异构负荷特征解析预测的虚拟电厂调度方法[J]. 系统仿真学报, 2025, 37(12): 2994-3006. |
| [3] | 于祥星, 赵艳东, 张宝琳. 基于电涡流NES的海上风机塔架振动控制[J]. 系统仿真学报, 2025, 37(12): 3007-3017. |
| [4] | 李斌, 王于绰. 基于多策略融合的光伏系统故障诊断方法[J]. 系统仿真学报, 2025, 37(12): 3018-3032. |
| [5] | 李孝斌, 胡冰, 尹超, 李波, 马军. 基于时空图卷积的汽车配件供应链需求预测与仿真分析[J]. 系统仿真学报, 2025, 37(12): 3060-3074. |
| [6] | 彭艺, 雷云揆, 杨青青, 李辉, 王健明. 改进PID搜索算法的山地环境无人机路径规划[J]. 系统仿真学报, 2025, 37(12): 3075-3086. |
| [7] | 陈逸, 邱思航, 朱正秋, 季雅泰, 赵勇, 鞠儒生. 基于启发式的人-大模型协作寻源方法[J]. 系统仿真学报, 2025, 37(12): 3112-3127. |
| [8] | 索婧怡, 卢柏宏, 屈澈. 影视LED光源光强分布测定及其在游戏引擎中的仿真研究[J]. 系统仿真学报, 2025, 37(12): 3140-3151. |
| [9] | 龚建兴, 胡海, 任海慧, 吴瑞祥. 面向虚实结合的军事训练系统互操作模型与运用[J]. 系统仿真学报, 2025, 37(12): 3161-3175. |
| [10] | 徐智霞, 王蕊, 孙楠, 何兵, 沈晓卫, 朱晓菲. 基于改进遗传算法的协同干扰资源分配问题研究[J]. 系统仿真学报, 2025, 37(12): 3176-3189. |
| [11] | 刘翔, 金乾坤. 基于PAC-Bayes的多目标强化学习A2C算法研究[J]. 系统仿真学报, 2025, 37(12): 3212-3223. |
| [12] | 杨兰英, 李超, 邹海锋, 万江涛, 张仁强, 刘惠, 卢宏. 基于改进蚁群算法与A*算法相融合的机器人路径规划优化[J]. 系统仿真学报, 2025, 37(11): 2956-2965. |
| [13] | 苏筱婷, 张小威, 田义, 李奇, 王帅豪. 星光导航动态仿真场景时序设计方法研究[J]. 系统仿真学报, 2025, 37(11): 2946-2955. |
| [14] | 张志利, 刘瑾, 周召发, 梁哲, 张云昊. 基于ISCSO-BP神经网络模型的光纤陀螺温度补偿技术研究[J]. 系统仿真学报, 2025, 37(11): 2904-2917. |
| [15] | 陈际同, 周佳加, 吴迪, 江海龙. 基于TD3-RRT的特殊环境下USV路径规划算法研究[J]. 系统仿真学报, 2025, 37(11): 2888-2903. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||