系统仿真学报 ›› 2020, Vol. 32 ›› Issue (7): 1279-1286.doi: 10.16182/j.issn1004731x.joss.19-VR0473
蔡兴泉, 涂宇欣, 葛亚坤, 杨哲
收稿日期:
2019-08-30
修回日期:
2019-11-18
出版日期:
2020-07-25
发布日期:
2020-07-15
作者简介:
蔡兴泉(1980-),男,山东,博士,教授,研究方向为虚拟现实、人机互动;涂宇欣(1994-),女,内蒙古,硕士生,研究方向为虚拟现实。
Cai Xingquan, Tu Yuxin, Ge Yakun, Yang Zhe
Received:
2019-08-30
Revised:
2019-11-18
Online:
2020-07-25
Published:
2020-07-15
摘要: 针对传统叶片识别易受环境干扰,难以实现复杂背景下的多叶片实时识别问题,提出一种基于CNN网络和多任务损失函数的实时叶片识别方法。采用CNN网络提取叶片图像特征图,输入到RPN网络生成区域候选框;依据特征图和区域候选框,提取候选框特征图,分别进行叶片分类和边界框回归,预测叶片类别和叶片预测框的定位;利用多任务损失函数约束分类和回归,来提高叶片分类和回归的准确率和运算速度。实验结果表明,该方法的平均实时叶片识别准确率为91.8%,平均实时识别速度为25 fps。
中图分类号:
蔡兴泉, 涂宇欣, 葛亚坤, 杨哲. 基于CNN网络和多任务损失函数的实时叶片识别[J]. 系统仿真学报, 2020, 32(7): 1279-1286.
Cai Xingquan, Tu Yuxin, Ge Yakun, Yang Zhe. Real-time Leaf Recognition Method Based on CNN Network and Multi-task Loss Function[J]. Journal of System Simulation, 2020, 32(7): 1279-1286.
[1] | 张宁, 刘文萍. 基于图像分析的植物叶片识别技术综述[J]. 计算机应用研究, 2011, 28(11): 4001-4007.Zhang Ning, Liu Wenping.Plant Leaf Recognition Technology Based on Image Analysis[J]. Application Research of Computers, 2011, 28(11): 4001-4007. |
[2] | Hu J, Chen Z B, Yang M, et al.A Multi-Scale Fusion Convolutional Neural Network for Plant Leaf Recognition[J]. IEEE Signal Processing Letters (S1070-9908), 2018, 25(6): 853-857. |
[3] | 杨天天, 潘晓星, 穆立蔷. 基于叶片图像特征数字化信息识别7种柳属植物[J]. 东北林业大学学报, 2014, 42(12): 75-79.Yang Tiantian, Pan Xiaoxing, Mu Liqiang.Identification of Seven Salix Species Using Digital Information Analysis of Leaf Image Characteristics[J]. Journal of Northeast Forestry University, 2014, 42(12): 75-79. |
[4] | 刘骥, 曹凤莲, 甘林昊. 基于叶片形状特征的植物识别方法[J]. 计算机应用, 2016, 36(S2): 200-202, 206.Liu Ji, Cao Fenglian, Gan Linhao.Plant Identification Method Based on Leaf Shape Features[J]. Journal of Computer Applications, 2016, 36(S2): 200-202, 206. |
[5] | 邹秋霞, 郜鲁涛, 盛立冲. 基于Android手机和图像特征识别技术的植物叶片分类系统的研究[J]. 安徽农业科学, 2015, 43(11): 367-369.Zou Qiuxia, Gao Lutao, Sheng Lichong.Study on Plant Leaves Classification System Based on Android Mobile Phone and Image Feature Recognition Technology[J]. Journal of Anhui Agricultural Sciences, 2015, 43(11): 367-369. |
[6] | Thanikkal J G, Dubey A K, Thomas M T.Whether color, shape and texture of leaves are the key features for image processing based plant recognition? An analysis![C]// 2017 Recent Developments in Control, Automation & Power Engineering(RDCAPE). Piscataway, NJ: IEEE, 2017: 404-409. |
[7] | Munisami T, Ramsurn M, Kishnah S, et al.Plant Leaf Recognition Using Shape Features and Colour Histogram with K-nearest Neighbour Classifiers[J]. Procedia Computer Science (S1877-0509), 2015, 58: 740-747. |
[8] | Srivastava V, Khunteta A.Comparative Analysis of Leaf Classification and Recognition by different SVM Classifiers[C]// 2018 International Conference on Inventive Research in Computing Applications(ICIRCA). Piscataway, NJ: IEEE, 2018: 626-631. |
[9] | 叶继华, 时淑霞, 李汉曦. 基于深度学习的驾驶关注区域检测方法研究[J]. 系统仿真学报, 2019, 31(7): 1421-1428.Ye Jihua, Shi Shuxia, Li Hanxi.Research and Implementation of Driving Concern Area Detection Based on Deep Learning[J]. Journal of System Simulation, 2019, 31(7): 1421-1428. |
[10] | Reyes A K, Caicedo J C, Camargo J E.Fine-tuning Deep Convolutional Networks for Plant Recognition[J]. CLEF(Working Notes), 2015, 1391: 467-475. |
[11] | 杜兰, 刘斌, 王燕. 基于卷积神经网络的SAR图像目标检测算法[J]. 电子与信息学报, 2016, 38(12): 3018-3025.Du Lan, Liu Bin, Wang Yan.Target Detection Method Based on Convolutional Neural Network for SAR Image[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3018-3025. |
[12] | 吴昀璞, 金炜东, 黄颖坤. 基于多域融合 CNN 的高速列车转向架故障检测[J]. 系统仿真学报, 2018, 30(11): 4492-4497.Wu Yunpu, Jin Weidong, Huang Yingkun.Fault Diagnosis of High Speed Train Bogie Based on Multi-domain Fusion CNN[J]. Journal of System Simulation, 2018, 30(11): 4492-4497. |
[13] | 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251.Zhou Feiyan, Jin Linpeng, Dong Jun.Review of Convolutional Neural Network[J]. Chinese Journal of Computers, 2017, 40(6): 1229-1251. |
[14] | 刘晶晶. 基于深度网络特征学习的植物叶片识别算法研究与实现[D]. 深圳: 深圳大学硕士论文, 2017.Liu Jingjing.Research and Implementation of Plant Leaf Recognition Algorithm Based on Deep Network Feature Learning[D]. Shenzhen: Shenzhen University, Master thesis, 2017. |
[15] | 张帅, 淮永建. 基于分层卷积深度学习系统的植物叶片识别研究[J]. 北京林业大学学报, 2016, 38(9): 108-115.Zhang Shuai, Huai Yongjian.Leaf Image Recognition Based on Layered Convolutions Neural Network Deep Learning[J]. Journal of Beijing Forestry University, 2016, 38(9): 108-115. |
[16] | Uijlings J R R, van de Sande K E A, Gevers T. Selective Search for Object Recognition[J]. International Journal of Computer Vision (S1573-1405), 2013, 104(2): 154-171. |
[17] | Chen M Y, Tang Y C, Zou X J.High-accuracy multi-camera reconstruction enhanced by adaptive point cloud correction algorithm[J]. Optics and Lasers in Engineering. Optics and Lasers in Engineering (S0143-8166), 2019, 122: 170-183. |
[18] | Lin G C, Tang Y C, Zou X J.In-field citrus detection and localisation based on RGB-D image analysis[J]. Biosystems Engineering (S1537-5110), 2019, 186: 34-44. |
[19] | Girshick R, Donahue J, Darrelland T, et al.Rich Feature Hierarchies for Object Detection and Semantic Segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2014. |
[20] | 曹诗雨, 刘跃虎, 李辛昭. 基于Fast R-CNN的车辆目标检测[J]. 中国图象图形学报, 2017, 22(5): 671-677.Cao Shiyu, Liu Yuehu, Li Xinzhao.Vehicle detection method based on fast R-CNN[J]. Journal of Image and Graphics, 2017, 22(5): 671-677. |
[21] | Girshick R.Fast R-CNN[C]. Proceedings of the IEEE international conference on computer vision. Piscataway, NJ: IEEE, 2015: 1440-1448. |
[22] | Redmon J, Divvala S, Girshick R, et al.You Only Look Once: Unified, Real-Time Object Detection[C]. Proceedings of the IEEE conference on computer vision and pattern recognition. Piscataway, NJ: IEEE, 2016: 779-788. |
[23] | 王全东, 常天庆, 张雷. 面向多尺度坦克装甲车辆目标检测的改进Faster R-CNN算法[J]. 计算机辅助设计与图形学学报, 2018, 30(12): 2278-2291.Wang Quandong, Chang Tianqing, Zhang Lei.An Improved Faster R-CNN Algorithm for Detection of Multi-scale Tank Armored Vehicle Targets[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(12): 2278-2291. |
[24] | Ren S Q, He K M, Girshick R, et al.Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 2015, 39(6): 1137-1149. |
[1] | 李智杰, 石昊琦, 李昌华, 张颉. 基于改进遗传算法的影像中心布局优化方法[J]. 系统仿真学报, 2022, 34(6): 1173-1184. |
[2] | 陈斌, 刘悦, 杨亚磊. 基于STN的机场航班过站保障时间协同规划建模[J]. 系统仿真学报, 2022, 34(6): 1196-1207. |
[3] | 杨凯, 陈纯毅, 胡小娟, 于海洋. 蒙卡渲染画面多特征非局部均值滤波降噪算法[J]. 系统仿真学报, 2022, 34(6): 1259-1266. |
[4] | 陈麒, 崔昊杨. 基于改进鸽群层级的无人机集群视觉巡检模型[J]. 系统仿真学报, 2022, 34(6): 1275-1285. |
[5] | 王沐晴, 张磊, 范秀敏, 骆晓萌, 朱文敏. VR外设驱动的虚拟人姿态优化仿真方法[J]. 系统仿真学报, 2022, 34(6): 1296-1303. |
[6] | 陆承, 靳学胜. 基于Steam VR的交互仿真水枪灭火训练系统设计[J]. 系统仿真学报, 2022, 34(6): 1312-1319. |
[7] | 高宏鼐, 付丽疆, 夏倩, 郭亚. 可观测度在光合作用模型性能评估中的应用[J]. 系统仿真学报, 2022, 34(6): 1330-1342. |
[8] | 倪凌佳, 黄晓霞, 李红旮, 张子博. 基于协作式深度强化学习的火灾应急疏散仿真研究[J]. 系统仿真学报, 2022, 34(6): 1353-1366. |
[9] | 蒙盾, 胡卓, 张华军. 基于改进A*算法的多层邮轮疏散系统仿真[J]. 系统仿真学报, 2022, 34(6): 1375-1382. |
[10] | 郭宇飞, 赵康, 海永清. 面向有限元分析的三角网格布尔运算方法[J]. 系统仿真学报, 2022, 34(5): 1003-1014. |
[11] | 吴桐, 王清辉, 徐志佳. 三周期极小曲面多孔材料渗透率尺度特性研究[J]. 系统仿真学报, 2022, 34(5): 1015-1024. |
[12] | 蒋阳升, 王思琛, 高宽, 刘梦, 姚志洪. 混入智能网联车队的混合交通流元胞自动机模型[J]. 系统仿真学报, 2022, 34(5): 1025-1032. |
[13] | 梁江涛, 王慧琴. 基于改进蚁群算法的建筑火灾疏散路径规划研究[J]. 系统仿真学报, 2022, 34(5): 1044-1053. |
[14] | 张其文, 张斌. 基于教学优化算法求解置换流水车间调度问题[J]. 系统仿真学报, 2022, 34(5): 1054-1063. |
[15] | 邢根上, 鲁芳, 李书山, 罗定提. 基于产品体验性的供应链交货模型与仿真研究[J]. 系统仿真学报, 2022, 34(5): 1064-1075. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||