系统仿真学报 ›› 2020, Vol. 32 ›› Issue (7): 1279-1286.doi: 10.16182/j.issn1004731x.joss.19-VR0473

• 仿真建模理论与方法 • 上一篇    下一篇

基于CNN网络和多任务损失函数的实时叶片识别

蔡兴泉, 涂宇欣, 葛亚坤, 杨哲   

  1. 北方工业大学信息学院,北京 100144
  • 收稿日期:2019-08-30 修回日期:2019-11-18 出版日期:2020-07-25 发布日期:2020-07-15
  • 作者简介:蔡兴泉(1980-),男,山东,博士,教授,研究方向为虚拟现实、人机互动;涂宇欣(1994-),女,内蒙古,硕士生,研究方向为虚拟现实。

Real-time Leaf Recognition Method Based on CNN Network and Multi-task Loss Function

Cai Xingquan, Tu Yuxin, Ge Yakun, Yang Zhe   

  1. School of Information Science and Technology, North China University of Technology, Beijing 100144, China
  • Received:2019-08-30 Revised:2019-11-18 Online:2020-07-25 Published:2020-07-15

摘要: 针对传统叶片识别易受环境干扰,难以实现复杂背景下的多叶片实时识别问题,提出一种基于CNN网络和多任务损失函数的实时叶片识别方法。采用CNN网络提取叶片图像特征图,输入到RPN网络生成区域候选框;依据特征图和区域候选框,提取候选框特征图,分别进行叶片分类和边界框回归,预测叶片类别和叶片预测框的定位;利用多任务损失函数约束分类和回归,来提高叶片分类和回归的准确率和运算速度。实验结果表明,该方法的平均实时叶片识别准确率为91.8%,平均实时识别速度为25 fps。

关键词: 叶片识别, 特征图, CNN网络, 多任务损失函数, 区域候选框

Abstract: Aiming at the problems that the traditional leaf recognition is susceptible to the environmental interference and is difficult to realize the multi-leaf real-time recognition in complex background, a real-time leaf recognition method based on CNN network and multi-task loss function is proposed. The CNN network is used to the extract image feature maps and input them into RPN network to generate regional proposals. On the basis of the feature maps and region proposals, the feature map is proposaled, the leaf classification and bounding box regression are performed respectively, and the leaf classification and position of the leaf prediction box are predicted. The multi-task loss function is used to constrain the classification and regression to improve the accuracy and speed of the leaf image classification and regression. Experimental results show that the average real-time leaf recognition accuracy is 91.8%, and the average real-time leaf recognition speed is 25 fps.

Key words: leaf recognition, feature map, CNN network, multitask loss function, region proposal

中图分类号: