系统仿真学报 ›› 2025, Vol. 37 ›› Issue (12): 3112-3127.doi: 10.16182/j.issn1004731x.joss.25-FZ0646E

• 论文 • 上一篇    

基于启发式的人-大模型协作寻源方法

陈逸, 邱思航, 朱正秋, 季雅泰, 赵勇, 鞠儒生   

  1. 国防科技大学 系统工程学院,湖南 长沙 410073
  • 收稿日期:2025-07-07 修回日期:2025-09-20 出版日期:2025-12-26 发布日期:2025-12-24
  • 通讯作者: 鞠儒生

A Method of Heuristic Human-LLM Collaborative Source Search

Chen Yi, Qiu Sihang, Zhu Zhengqiu, Ji Yatai, Zhao Yong, Ju Rusheng   

  1. College of Systems Engineering, National University of Defense Technology, Changsha 410073, China
  • Received:2025-07-07 Revised:2025-09-20 Online:2025-12-26 Published:2025-12-24
  • Contact: Ju Rusheng
  • About author:Chen Yi (2002-), male, master student, research area: system simulation.
  • Supported by:
    National Natural Science Foundation of China(62202477)

摘要:

为解决传统寻源算法易陷入局部最优,结合众包与人机协作的寻源方法因人工干预存在成本高效率低等问题,提出一种轻量化的人机协作框架。利用多模态大语言模型实现环境视觉-语言转换,结合思维链推理优化决策,构建了包含概率分布筛选和开发与探索平衡的启发式策略。实验验证了该框架的有效性。人机对齐启发式策略与大模型适配设计为复杂场景寻源任务提供了降低人工依赖的新范式。

关键词: 寻源, 人机协作, 大语言模型, 启发式策略, 人机对齐

Abstract:

Traditional source search algorithms are prone to local optimization, and source search methods combining crowdsourcing and human-AI collaboration suffer from low cost-efficiency due to human intervention. In this study, we proposed a lightweight human-AI collaboration framework that utilized multi-modal large language models (MLLMs) to achieve visual-language conversion, combined chain-of-thought (CoT) reasoning to optimize decision-making, and constructed a heuristic strategy that incorporated probability distribution filtering and a balance between exploitation and exploration. The effectiveness of the framework was verified by experiments. The human-AI alignment heuristic strategy with large language model adaptation design provides a new idea to reduce manual dependency for source search task in complex scenes.

Key words: source search, human-AI collaboration, large language model, heuristic strategy, human-AI alignment

中图分类号: