系统仿真学报 ›› 2025, Vol. 37 ›› Issue (7): 1607-1623.doi: 10.16182/j.issn1004731x.joss.25-0451
范文慧, 蒋沅
收稿日期:
2025-05-20
修回日期:
2025-06-12
出版日期:
2025-07-18
发布日期:
2025-07-30
第一作者简介:
Fan Wenhui, Jiang YuanChiang Yuan
Received:
2025-05-20
Revised:
2025-06-12
Online:
2025-07-18
Published:
2025-07-30
摘要:
随着人工智能与计算机技术迅猛发展,仿真技术也取得了跨越式发展,有力推动了仿真学科逐步走向成熟。综述了国内外相关计算机仿真技术研究进展,阐述了仿真定义与内涵,建议中文“仿真”“仿效”和“模拟”都统一为“仿真”,英文“Simulation”“Emulation”和“Analog”统一翻译为“Simulation”;定义了仿真科学与工程学科,总结了仿真科学与工程的相似理论、计算理论、模型验证理论3种基础理论,并建议一级学科为仿真科学与工程;归纳提出了仿真科学与工程的数值仿真、统计仿真、智体仿真、视景仿真与共生仿真5种理论与方法,并将其建议为二级学科;分析概括了人工智能时代的仿真应用;从5个方面给出了人工智能时代的计算机仿真技术进展,详细阐述机器学习、深度学习、强化学习、生成对抗网络、物理信息神经网络、大语言模型在计算机仿真领域的应用。
中图分类号:
范文慧,蒋沅 . 人工智能时代的仿真科学与工程思考[J]. 系统仿真学报, 2025, 37(7): 1607-1623.
Fan Wenhui,Jiang YuanChiang Yuan . Thinking on Simulation Science and Engineering in the Era of Artificial Intelligence[J]. Journal of System Simulation, 2025, 37(7): 1607-1623.
[1] | 熊光楞, 孙国基. 数字仿真技术及其应用(综述)[J]. 信息与控制, 1983(4): 1-9, 85. |
Xiong Guangleng, Sun Guoji. The Technology of Digital Simulation and Its Application[J]. Information and Control, 1983(4): 1-9, 85. | |
[2] | 熊光楞. 仿真技术的现在与未来(综述)[J]. 信息与控制, 1989, 18(4): 26-32. |
Xiong Guangleng. The State of the Art and Future Prospects of Simulation Technology[J]. Information and Control, 1989, 18(4): 26-32. | |
[3] | 文传源. 系统仿真学科与仿真系统技术[J]. 系统仿真学报, 1992, 4(3): 1-8. |
Wen Chuanyuan. System Simulation Science and Simulation System Technology[J]. Journal of System Simulation, 1992, 4(3): 1-8. | |
[4] | 李伯虎, 文传源. 系统仿真技术新动向[J]. 计算机仿真, 1996, 13(3): 3-5, 61. |
Li Bohu, Wen Chuanyuan. New Trends of System Simulation Technology[J]. Computer Simulation, 1996, 13(3): 3-5, 61. | |
[5] | 赵沁平, 怀进鹏, 李波, 等. 虚拟现实研究概况[J]. 计算机研究与发展, 1996, 33(7): 493-500. |
Zhao Qinping, Huai Jinpeng, Li Bo, et al. A Survey of Activities in Virtual Reality[J]. Journal of Computer Research and Development, 1996, 33(7): 493-500. | |
[6] | 郭齐胜. 仿真工程专业人才培养问题初探[J]. 装甲兵工程学院学报, 2000, 14(4): 18-21. |
Guo Qisheng. A Tentative Probe into the Problem of Simulation Engineering Professional Cultivation[J]. Journal of Armored Force Engineering Institute, 2000, 14(4): 18-21. | |
[7] | 熊光楞, 李伯虎, 柴旭东. 虚拟样机技术[J]. 系统仿真学报, 2001, 13(1): 114-117. |
Xiong Guangleng, Li Bohu, Chai Xudong. Virtual Prototyping Technology[J]. Journal of System Simulation, 2001, 13(1): 114-117. | |
[8] | 熊光楞, 范文慧, 陈晓波. 复杂产品开发的仿真技术[J]. 系统仿真学报, 2004, 16(2): 194-201. |
Xiong Guangleng, Fan Wenhui, Chen Xiaobo. Simulation Technology of Complex Product Development[J]. Journal of System Simulation, 2004, 16(2): 194-201. | |
[9] | 黄柯棣. 对建模与仿真技术学科的粗浅理解-为庆祝 «计算机仿真»杂志创刊20周年而写[J]. 计算机仿真, 2004, 21(9): 6-9. |
Huang Kedi. Comprehension on the Subject of Modeling and Simulation[J]. Computer Simulation, 2004, 21(9): 6-9. | |
[10] | 李伯虎, 柴旭东, 朱文海, 等. 现代建模与仿真技术发展中的几个焦点[J]. 系统仿真学报, 2004, 16(9): 1871-1878. |
Li Bohu, Chai Xudong, Zhu Wenhai, et al. Some Focusing Points in Development of Modern Modeling and Simulation Technology[J]. Journal of System Simulation, 2004, 16(9): 1871-1878. | |
[11] | 熊光楞, 范文慧. 21世纪制造业的建模与仿真技术[J]. 系统仿真学报, 2004, 16(9): 1884-1886. |
Xiong Guangleng, Fan Wenhui. Modeling and Simulation of Manufacturing in the 21st Century[J]. Journal of System Simulation, 2004, 16(9): 1884-1886. | |
[12] | 王子才. 仿真科学的发展及形成[J]. 系统仿真学报, 2005, 17(6): 1279-1281. |
Wang Zicai. Development and Formation of Simulation Science[J]. Journal of System Simulation, 2005, 17(6): 1279-1281. | |
[13] | 王精业. 军事转型中的仿真科学与技术[J]. 系统仿真学报, 2005, 17(6): 1282-1284, 1288. |
Wang Jingye. Simulation Science and Technology in Military Transformation[J]. Journal of System Simulation, 2005, 17(6): 1282-1284, 1288. | |
[14] | 吴重光. 仿真与教育[J]. 系统仿真学报, 2005, 17(6): 1285-1288. |
Wu Chongguang. Simulation and Education[J]. Journal of System Simulation, 2005, 17(6): 1285-1288. | |
[15] | 王精业, 杨学会. 仿真科学与技术的发展及其理论体系[J]. 计算机仿真, 2006, 23(1): 1-4. |
Wang Jingye, Yang Xuehui. Development of Simulation Science and Technology and Its Theory System[J]. Computer Simulation, 2006, 23(1): 1-4. | |
[16] | 刘藻珍. 仿真科学的研究[J]. 科技导报, 2007, 25(2): 14-21. |
Liu Zaozhen. Study on Simulation Science[J]. Science & Technology Review, 2007, 25(2): 14-21. | |
[17] | 王正中. 仿真学科的研究[J]. 系统仿真学报, 2007, 19(18): 4101-4103. |
Wang Zhengzhong. Study of Simulation Discipline[J]. Journal of System Simulation, 2007, 19(18): 4101-4103. | |
[18] | 赵沁平. 虚拟现实综述[J]. 中国科学F辑(信息科学), 2009, 39(1): 2-46. |
[19] | 陈宗基, 李伯虎, 王行仁, 等. "仿真科学与技术"学科研究[J]. 系统仿真学报, 2009, 21(17): 5265-5269. |
Chen Zongji, Li Bohu, Wang Xingren, et al. Study on Discipline of Simulation Science and Technology[J]. Journal of System Simulation, 2009, 21(17): 5265-5269. | |
[20] | 王行仁, 龚光红, 刘藻珍, 等. "仿真科学与技术"学科知识体系与课程体系的探讨[J]. 系统仿真学报, 2009, 21(17): 5275-5280. |
Wang Xingren, Gong Guanghong, Liu Zaozhen, et al. Discussion About Body of Knowledge and Body of Course for Simulation Science and Technology Discipline[J]. Journal of System Simulation, 2009, 21(17): 5275-5280. | |
[21] | 肖田元, 范文慧, 杨明, 等. 仿真科学与技术学科的人才培养与社会需求[J]. 系统仿真学报, 2009, 21(17): 5281-5288. |
Xiao Tianyuan, Fan Wenhui, Yang Ming, et al. Study on Education and Social Demand of Simulation Science and Technology Discipline[J]. Journal of System Simulation, 2009, 21(17): 5281-5288. | |
[22] | 文传源. 系统、仿真系统及其理论[J]. 系统仿真学报, 2009, 21(17): 5289-5291. |
Wen Chuanyuan. Systems, Simulation Systems and Their Theories[J]. Journal of System Simulation, 2009, 21(17): 5289-5291. | |
[23] | 李伯虎, 柴旭东, 侯宝存, 等. 一种基于云计算理念的网络化建模与仿真平台-"云仿真平台"[J]. 系统仿真学报, 2009, 21(17): 5292-5299. |
Li Bohu, Chai Xudong, Hou Baocun, et al. Networked Modeling & Simulation Platform Based on Concept of Cloud Computing-cloud Simulation Platform[J]. Journal of System Simulation, 2009, 21(17): 5292-5299. | |
[24] | 徐庚保, 曾莲芝. 数字仿真基础科学[J]. 计算机仿真, 2009, 26(10): 1-4. |
Xu Gengbao, Zeng Lianzhi. Basic Science of Digital Simulation[J]. Computer Simulation, 2009, 26(10): 1-4. | |
[25] | 徐庚保, 曾莲芝. 数字仿真技术科学[J]. 计算机仿真, 2009, 26(11): 1-5. |
Xu Gengbao, Zeng Lianzhi. Technical Science of Digital Simulation[J]. Computer Simulation, 2009, 26(11): 1-5. | |
[26] | 邱晓刚, 段伟. DEVS研究进展及其对建模与仿真学科建立的作用[J]. 系统仿真学报, 2009, 21(21): 6697-6704, 6709. |
Qiu Xiaogang, Duan Wei. On Research Development of DEVS and Its Function to Modeling and Simulation Discipline[J]. Journal of System Simulation, 2009, 21(21): 6697-6704, 6709. | |
[27] | 黄先祥, 龙勇, 张志利, 等. 分布式视景仿真技术综述[J]. 系统仿真学报, 2010, 22(11): 2742-2747. |
Huang Xianxiang, Long Yong, Zhang Zhili, et al. Summarization of Distributed Visual Simulation Technology[J]. Journal of System Simulation, 2010, 22(11): 2742-2747. | |
[28] | 李伯虎, 柴旭东, 李潭, 等. 复杂系统高效能仿真技术研究[J]. 中国电子科学研究院学报, 2012, 7(3): 221-228, 245. |
Li Bohu, Chai Xudong, Li Tan, et al. Research on High-Efficiency Simulation Technology of Complex System[J]. Journal of China Academy of Electronics and Information Technology, 2012, 7(3): 221-228, 245. | |
[29] | 张霖, 张雪松, 宋晓, 等. 面向复杂系统仿真的模型工程[J]. 系统仿真学报, 2013, 25(11): 2729-2736. |
Zhang Lin, Zhang Xuesong, Song Xiao, et al. Model Engineering for Complex System Simulation[J]. Journal of System Simulation, 2013, 25(11): 2729-2736. | |
[30] | 胡晓峰. 大数据时代对建模仿真的挑战与思考[J]. 军事运筹与系统工程, 2013, 27(4): 5-12. |
[31] | 赵沁平, 周彬, 李甲, 等. 虚拟现实技术研究进展[J]. 科技导报, 2016, 34(14): 71-75. |
Zhao Qinping, Zhou Bin, Li Jia, et al. A Brief Survey on Virtual Reality Technology[J]. Science & Technology Review, 2016, 34(14): 71-75. | |
[32] | 徐庚保, 曾莲芝. 系统论是仿真又一个基础理论[J]. 计算机仿真, 2016, 33(12): 1-4, 9. |
Xu Gengbao, Zeng Lianzhi. System Theory is Another Basic Theory of Simulation[J]. Computer Simulation, 2016, 33(12): 1-4, 9. | |
[33] | 赵沁平, 蒋恺. 虚拟现实产业爆发的前夜[J]. 中国科学(信息科学), 2016, 46(12): 1774-1778. |
[34] | 李伯虎, 柴旭东, 张霖, 等. 面向新型人工智能系统的建模与仿真技术初步研究[J]. 系统仿真学报, 2018, 30(2): 349-362. |
Li Bohu, Chai Xudong, Zhang Lin, et al. Preliminary Study of Modeling and Simulation Technology Oriented to Neo-type Artificial Intelligent Systems[J]. Journal of System Simulation, 2018, 30(2): 349-362. | |
[35] | 徐享忠, 郭齐胜. 军用仿真发展现状与展望[J]. 装甲兵工程学院学报, 2019, 33(1): 75-86. |
Xu Xiangzhong, Guo Qisheng. Development Status and Perspective of Military Simulation[J]. Journal of Academy of Armored Force Engineering, 2019, 33(1): 75-86. | |
[36] | 邱晓刚, 段红, 谢旭, 等. 仿真学科知识体系的若干问题研究[J]. 系统仿真学报, 2021, 33(4): 753-762. |
Qiu Xiaogang, Duan Hong, Xie Xu, et al. Research on Some Questions of Simulation Body of Knowledge[J]. Journal of System Simulation, 2021, 33(4): 753-762. | |
[37] | 邱晓刚, 段红, 谢旭, 等. 我国仿真学科研究的发展历程与展望[J]. 系统仿真学报, 2021, 33(5): 1008-1018. |
Qiu Xiaogang, Duan Hong, Xie Xu, et al. Development and Prospect of Simulation Research in China[J]. Journal of System Simulation, 2021, 33(5): 1008-1018. | |
[38] | 曹建国. 数字化转型下航空发动机仿真技术发展机遇及应用展望[J]. 系统仿真学报, 2023, 35(1): 1-10. |
Cao Jianguo. Development Opportunities and Application Prospects of Aero-engine Simulation Technology Under Digital Transformation[J]. Journal of System Simulation, 2023, 35(1): 1-10. | |
[39] | Hassberger J A. Simulation-based Expert System for Nuclear Power Plant Diagnostics[D]. Ann Arbor: University of Michigan, 1986. |
[40] | Manivannan Sundaravaradhan. JITSAI-a New Rule-based Simulator for Modeling Just-in-time Manufacturing Systems[D]. State College: The Pennsylvania State University, 1988. |
[41] | Gon Kim Tag. A Knowledge-based Environment for Hierarchical Modelling and Simulation[D]. Tucson: University of Arizona, 1988. |
[42] | Han Choong-Hee. Artificial Intelligence Methodology for Simulation Modeling[D]. Atlanta: Georgia Institute of Technology, 1990. |
[43] | David Robert Hillis. Using a Computer-based Simulation with an Artificial Intelligence Component and Discovery Learning to Formulate Training Needs for a New Technology[D]. Raleigh: North Carolina State University, 1992. |
[44] | Barakat M T. Semantic Modelling for Discrete Event Simulation[D]. London: London School of Economics and Political Science, 1992. |
[45] | Syed Murtuza Abbas. Advanced Hybrid Simulation Model Based on Phenomenology and Artificial Intelligence[D]. Cincinnati: University of Cincinnati, 2015. |
[46] | Babanezhad Meisam, Behroyan Iman, Ali Taghvaie Nakhjiri, et al. Simulation of Liquid Flow with a Combination Artificial Intelligence Flow Field and Adams-Bashforth Method[J]. Scientific Reports, 2020, 10(1): 16719. |
[47] | Winkler-Schwartz Alexander. Improving Neurosurgical Operative Performance Through Virtual Reality Simulation and Artificial Intelligence[D]. Montreal: McGill University, 2022. |
[48] | Dai Chih-Pu. Data, Enhancing Learning Achievements and Self-efficacy for Preservice Teachers Using Model-based Support in Simulation-based Learning with Artificial Intelligence-powered Virtual Agents[D]. Tallahassee: Florida State University, 2023. |
[49] | Nasim Md. Accelerating AI-driven Scientific Discovery with End-to-end Learning and Random Projection[D]. West Lafayette: Purdue University, 2024. |
[50] | Liu Xuemin. Active Control of Laminar and Turbulent Flows Using Adjoint-based Machine Learning[D]. South Bend: University of Notre Dame, 2024. |
[51] | Mao Yuwei. Artificial Intelligence Methodologies for Prediction and Optimization Problems in Materials Informatics[D]. Evanston: Northwestern University, 2024. |
[52] | Jin Yongxu. Combining Neural Networks and Physics-based Simulation for Cloth and Flesh Dynamics[D]. Palo Alto: Stanford University, 2024. |
[53] | Shi Neng. Deep Surrogate Models for Parameter Space Exploration of Ensemble Simulations[D]. Columbus: The Ohio State University, 2024. |
[54] | Li Shibo. Efficient Probabilistic Learning and Optimization for Physical Simulations[D]. Salt Lake City: The University of Utah, 2024. |
[55] | Qiao Yiling. Machine Learning with Differentiable Physics Priors[D]. College Park: University of Maryland, 2024. |
[56] | Zhao Qingqi. Investigation of Underground Hydrogen Storage Using Multiscale Simulation and Machine Learning[D]. Hoboken: Stevens Institute of Technology, 2024. |
[57] | Chen Kai. Physics-informed Neural Network-based Constitutive Framework for Soft Adhesives[D]. Hong Kong: The Hong Kong University of Science and Technology, 2024. |
[58] | Bossart Matthew A. Scientific Machine Learning for Power System Dynamic Simulation[D]. Boulder: University of Colorado, 2024. |
[59] | Gong Ran. Advancing the Cognitive Abilities of Embodied Agents: Large-scale Simulations and Multi-agent Collaborations[D]. Los Angeles: University of California, 2024. |
[60] | Huang Peide. Co-evolving Environments and Agents for Physical-world Deployments[D]. Pittsburgh: Carnegie Mellon University, 2024. |
[61] | Yang Guang. Human-aware Mobile Robot Navigation: Learning-based Methods[D]. Hoboken: Stevens Institute of Technology, 2024. |
[62] | Marlier Norman. Simulation-Based Inference for Robotic Grasping[D]. Liège: University of Liège, 2024. |
[63] | Delaunoy Arnaud. Towards Reliable Simulation-Based Inference[D]. Liège: University of Liège, 2024. |
[64] | Flávia Georgina da Silva Pires. Trustable Intelligent Decision Support for Enhancing Industrial Digital Twins[D]. Porto: University of Porto, 2024. |
[65] | Chuang Y S. Simulating Human Opinion Dynamics Using AI Agents and Large Language Models[D]. Madison: University of Wisconsin-Madison, 2024. |
[66] | Xu Xinghui. A Multi-agent Reinforcement Learning Task Allocation Framework for Navigation Sequences of Construction Robots[D]. New York: New York University, 2024. |
[67] | John Anthony Jamison. Agent-based Modeling Methodology: A Predictive Analytical Strategy for Augmenting Strategic Intelligence Forecasts[D]. Charles Town: American Public University System, 2024. |
[68] | Pilarski Sebastian. Artificial Intelligence Driven Decision-making Under Uncertainty[D]. Montreal: McGill University, 2024. |
[69] | Xiao Ziren. Artificial Intelligent-based Multi-agent Collaborative Path Planning Methods[D]. Liverpool: University of Liverpool, 2024. |
[70] | Butts D J. Data, Machine Learning, and Policy Informed Agent-based Modeling[D]. East Lansing: Michigan State University, 2024. |
[71] | Zhang Tianpeng. Multi-agent Motion Planning for Collaborative and Large-scale Applications[D]. Cambridge: Harvard University, 2024. |
[72] | Matheus Aparecido do Carmo Alves. Monte-Carlo Based Online Planning Under Partial Observability: Solving Single and Multi-agent Problems [D]. Lancaster: Lancaster University, 2024. |
[73] | He Liang. Real-time Multi-agent Motion Planning for the Narrow Passage Problem[D]. Chapel Hill: University of North Carolina, 2024. |
[74] | Johnsson Aanders. Accelerating Atomistic Simulations with GPUs and Machine Learning[D]. Cambridge: Harvard University, 2024. |
[75] | Manea Mohammed Almatared. An Integrated Digital Twin Framework and Evacuation Simulation System for Enhanced Safety in Smart Buildings[D]. Kalamazoo: Western Michigan University, 2024. |
[76] | Musielewicz Joseph. Improving Machine Learning Frameworks for Catalyst Simulations[D]. Ames: Iowa State University, 2025. |
[77] | Mo Zhaobin. Physics-informed Deep Learning for Trajectory Prediction and Uncertainty Quantification[D]. New York: Columbia University, 2025. |
[78] | Maity A. Unknown-unknowns in Human-centric AI Systems[D]. Tempe: Arizona State University, 2025. |
[79] | Huang Xuhui. AI-enabled Knowledge Transfer and Learning for Nondestructive Evaluation Toward Intelligent and Adaptive Systems[D]. East Lansing: Michigan State University, 2025. |
[80] | Swick Brennan. Flexible Robot Programming Through Human-guided State Machine Synthesis with Large Language Models[D]. Columbus: Ohio State University, 2024. |
[81] | Rives Alexander. Language Models at the Scale of Evolution[D]. New York: New York University, 2025. |
[82] | Úndína Ósk Gísladóttir. Leveraging Large Language Models to Enable Drug Safety Research[D]. New York: Columbia University, 2025. |
[83] | Jawad A. Simulating Surrounding Human Drivers with Cognitive Models in Autonomous Vehicles Testing Scenarios[D]. Santa Cruz: University of California, 2025. |
[84] | 基尔皮契夫 M B. 相似理论[M]. 沈自求, 译. 北京: 科学出版社, 1955. |
[85] | 徐挺. 相似理论与模型试验[M]. 北京: 中国农业机械出版社, 1982. |
[86] | 周美立. 相似工程学[M]. 北京: 机械工业出版社, 1998. |
[87] | 肖田元, 范文慧. 连续系统建模与仿真[M]. 北京: 电子工业出版社, 2010. |
Xiao Tianyuan, Fan Wenhui. Modeling and Simulation of Continuous System[M]. Beijing: Publishing House of Electronics Industry, 2010. | |
[88] | 肖田元, 范文慧. 离散事件系统建模与仿真[M]. 北京: 电子工业出版社, 2011. |
Xiao Tianyuan, Fan Wenhui. Modeling & Simulation for Discrete Event System[M]. Beijing: Publishing House of Electronics Industry, 2011. | |
[89] | 刘峥. 基于计算理论的若干问题研究[D]. 杭州: 浙江理工大学, 2023. |
Liu Zheng. Study of Several Issues Based on the Theory of Computation[D]. Hangzhou: Zhejiang Sci-Tech University, 2023. | |
[90] | 刘庆鸿, 陈德源, 王子才. 建模与仿真校核、验证与确认综述[J]. 系统仿真学报, 2003, 15(7): 925-930. |
Liu Qinghong, Chen Deyuan, Wang Zicai. An Overview of Modeling and Simulation Verification, Validation, and Accreditation[J]. Journal of System Simulation, 2003, 15(7): 925-930. | |
[91] | 贾仁耀, 刘湘伟. 建模与仿真的校核与验证技术综述[J]. 计算机仿真, 2007, 24(4): 49-52. |
Jia Renyao, Liu Xiangwei. An Overview of Modeling and Simulation Verification and Validation Techniques[J]. Computer Simulation, 2007, 24(4): 49-52. | |
[92] | 王仁春, 李昊, 戴金海. 系统建模与仿真应用的校验、确认与验收[J]. 计算机仿真, 2007, 24(5): 58-61. |
Wang Renchun, Li Hao, Dai Jinhai. Verification, Validation and Accreditation of System Modeling and Simulation Applications[J]. Computer Simulation, 2007, 24(5): 58-61. |
[1] | 苏炯铭, 罗俊仁, 陈少飞. 智能博弈决策策略求解新视角实证分析[J]. 系统仿真学报, 2025, 37(2): 345-361. |
[2] | 包为民, 祁振强. 航天装备体系化仿真发展的思考[J]. 系统仿真学报, 2024, 36(6): 1257-1272. |
[3] | 邹复民, 郭峰, 罗思杰, 廖律超, 李楠, 邢悦. 高速公路ETC仿真平台研究与设计[J]. 系统仿真学报, 2023, 35(12): 2624-2640. |
[4] | 成城, 陈智杰, 郭子铭, 李妮. 多智能体协同决策仿真平台研究与开发[J]. 系统仿真学报, 2023, 35(12): 2669-2679. |
[5] | 曹建国. 数字化转型下航空发动机仿真技术发展机遇及应用展望[J]. 系统仿真学报, 2023, 35(1): 1-10. |
[6] | 唐宇波, 沈弼龙, 师磊, 易星. 下一代兵棋系统模型引擎设计问题研究[J]. 系统仿真学报, 2021, 33(9): 2025-2036. |
[7] | 段红, 邱晓刚. 网络化仿真及其发展趋势[J]. 系统仿真学报, 2021, 33(7): 1526-1533. |
[8] | 游雄, 田江鹏. 面向无人自主平台的战场地理环境模型研究[J]. 系统仿真学报, 2020, 32(9): 1645-1653. |
[9] | 邱晓刚, 陈亚洲, 张鹏. 从系统仿真到领域仿真的拓展[J]. 系统仿真学报, 2020, 32(9): 1637-1644. |
[10] | 黄瑞松, 李海凤, 刘金, 孔文华. 飞行器半实物仿真技术现状与发展趋势分析[J]. 系统仿真学报, 2019, 31(9): 1763-1774. |
[11] | 杜怡曼, 苏红帆, 陈宇, 刘龙飞, 吴建平. 南宁市滨湖路绿波方案仿真评估[J]. 系统仿真学报, 2019, 31(3): 585-591. |
[12] | 杜怡曼, 苏红帆, 吴建平, 陈宇, 黄琳, 刘龙飞. 南宁市中心区域交通动态调控技术[J]. 系统仿真学报, 2019, 31(2): 324-331. |
[13] | 邱晓刚, 段红, 陈彬. 作战实验体系化初探[J]. 系统仿真学报, 2019, 31(12): 2652-2656. |
[14] | 刘闻, 王晓路, 汪宏昇, 张恒, 王长庆. 基于Agent的低轨预警卫星星座探测仿真分析[J]. 系统仿真学报, 2019, 31(11): 2413-2421. |
[15] | 朱丰, 胡晓峰, 吴琳, 贺筱媛, 吕学志, 廖鹰. 从态势认知走向态势智能认知[J]. 系统仿真学报, 2018, 30(3): 761-771. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||