| [1] |
Lample G, Chaplot D S. Playing FPS Games with Deep Reinforcement Learning[C]//Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 2140-2146.
|
| [2] |
Nguyen H, La H. Review of Deep Reinforcement Learning for Robot Manipulation[C]//2019 Third IEEE International Conference on Robotic Computing (IRC). Piscataway: IEEE, 2019: 590-595.
|
| [3] |
Zhang Weiwei, Ji Ming, Yu Haoran, et al. ReLP: Reinforcement Learning Pruning Method Based on Prior Knowledge[J]. Neural Processing Letters, 2023, 55(4): 4661-4678.
|
| [4] |
Yang Yikun, He Jiarui, Chen Chunlin, et al. Balancing Awareness Fast Charging Control for Lithium-ion Battery Pack Using Deep Reinforcement Learning[J]. IEEE Transactions on Industrial Electronics, 2023, 71(4): 3718-3727.
|
| [5] |
安靖, 司光亚, 张雷. 基于深度强化学习的立体投送策略优化方法研究[J]. 系统仿真学报, 2024, 36(1): 39-49.
|
|
An Jing, Si Guangya, Zhang Lei. Strategy Optimization Method of Multi-dimension Projection Based on Deep Reinforcement Learning[J]. Journal of System Simulation, 2024, 36(1): 39-49.
|
| [6] |
逄金辉, 冯子聪. 基于不确定性的深度强化学习探索方法综述[J]. 计算机应用研究, 2023, 40(11): 3201-3210.
|
|
Pang Jinhui, Feng Zicong. Exploration Approaches in Deep Reinforcement Learning Based on Uncertainty: A Review[J]. Application Research of Computers, 2023, 40(11): 3201-3210.
|
| [7] |
Arulkumaran K, Deisenroth M P, Brundage M, et al. Deep Reinforcement Learning: A Brief Survey[J]. IEEE Signal Processing Magazine, 2017, 34(6): 26-38.
|
| [8] |
Salimans T, Ho J, Chen X, et al. Evolution Strategies as a Scalable Alternative to Reinforcement Learning[J]. arXiv preprint arXiv:, 2017.
|
| [9] |
Mania H, Guy A, Recht B. Simple Random Search of Static Linear Policies is Competitive for Reinforcement Learning[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2018: 1805-1814.
|
| [10] |
Slowik Adam, Kwasnicka Halina. Evolutionary Algorithms and Their Applications to Engineering Problems[J]. Neural Computing and Applications, 2020, 32(16): 12363-12379.
|
| [11] |
Li Jialian, Ren Tongzheng, Yan Dong, et al. Policy Learning for Robust Markov Decision Process with a Mismatched Generative Model[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 7417-7425.
|
| [12] |
Such F P, Madhavan V, Conti E, et al. Deep Neuroevolution: Genetic algorithms are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning[J]. arXiv Preprint arXiv:, 2017.
|
| [13] |
Sigaud Olivier. Combining Evolution and Deep Reinforcement Learning for Policy Search: A Survey[J]. ACM Transactions on Evolutionary Learning and Optimization, 2023, 3(3): 10.
|
| [14] |
Qian Hong, Yu Yang. Derivative-free Reinforcement Learning: A Review[J]. Frontiers of Computer Science, 2021, 15(6): 156336.
|
| [15] |
Khadka S, Tumer K. Evolution-guided Policy Gradient in Reinforcement Learning[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2018: 1196-1208.
|
| [16] |
Drugan Madalina M. Reinforcement Learning Versus Evolutionary Computation: A Survey on Hybrid Algorithms[J]. Swarm and Evolutionary Computation, 2019, 44: 228-246.
|
| [17] |
吕帅, 龚晓宇, 张正昊, 等. 结合进化算法的深度强化学习方法研究综述[J]. 计算机学报, 2022, 45(7): 1478-1499.
|
|
Shuai Lü, Gong Xiaoyu, Zhang Zhenghao, et al. Survey of Deep Reinforcement Learning Methods with Evolutionary Algorithms[J]. Chinese Journal of Computers, 2022, 45(7): 1478-1499.
|
| [18] |
Moriarty D E, Schultz A C, Grefenstette J J. Evolutionary Algorithms for Reinforcement Learning[J]. Journal of Artificial Intelligence Research, 1999, 11(1): 241-276.
|
| [19] |
Whiteson S, Stone P. Evolutionary Function Approximation for Reinforcement Learning[J]. The Journal of Machine Learning Research, 2006, 7: 877-917.
|
| [20] |
王君逸, 王志, 李华雄, 等. 基于自适应噪声的最大熵进化强化学习方法[J]. 自动化学报, 2023, 49(1): 54-66.
|
|
Wang Junyi, Wang Zhi, Li Huaxiong, et al. Adaptive Noise-based Evolutionary Reinforcement Learning with Maximum Entropy[J]. Acta Automatica Sinica, 2023, 49(1): 54-66.
|
| [21] |
Bodnar C, Day B, Lió Pietro. Proximal Distilled Evolutionary Reinforcement Learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 3283-3290.
|
| [22] |
Pourchot Aloïs, Sigaud Olivier. CEM-RL: Combining Evolutionary and Gradient-based Methods for Policy Search[C]//ICLR 2019. New York: ICLR, 2019: 1-18.
|
| [23] |
王尧, 罗俊仁, 周棪忠, 等. 面向策略探索的强化学习与进化计算方法综述[J]. 计算机科学, 2024, 51(3): 183-197.
|
|
Wang Yao, Luo Junren, Zhou Yanzhong, et al. Review of Reinforcement Learning and Evolutionary Computation Methods for Strategy Exploration[J]. Computer Science, 2024, 51(3): 183-197.
|
| [24] |
Wang Yuxing, Zhang Tiantian, Chang Yongzhe, et al. A Surrogate-assisted Controller for Expensive Evolutionary Reinforcement Learning[J]. Information Sciences, 2022, 616: 539-557.
|
| [25] |
Shuai Lü, Han Shuai, Zhou Wenbo, et al. Recruitment-imitation Mechanism for Evolutionary Reinforcement Learning[J]. Information Sciences, 2021, 553: 172-188.
|
| [26] |
Chen Maiyue, He Guangyi. Efficient and Stable Off-policy Training via Behavior-aware Evolutionary Learning[C]//Proceedings of the 6th Conference on Robot Learning. Chia Laguna Resort: PMLR, 2023: 482-491.
|
| [27] |
Ma Yan, Liu Tianxing, Wei Bingsheng, et al. Evolutionary Action Selection for Gradient-based Policy Learning[C]//Neural Information Processing. Cham: Springer International Publishing, 2023: 579-590.
|
| [28] |
Dong Caibo, Li Dazi. Adaptive Evolutionary Reinforcement Learning with Policy Direction[J]. Neural Processing Letters, 2024, 56(2): 69.
|
| [29] |
Fujimoto S, van Hoof Herke, Meger D. Addressing Function Approximation Error in Actor-critic Methods[C]//Proceedings of the 35th International Conference on Machine Learning. Chia Laguna Resort: PMLR, 2018: 1587-1596.
|
| [30] |
Fujimoto S, Gu Shixiang. A Minimalist Approach to Offline Reinforcement Learning[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2021: 20132-20145.
|
| [31] |
彭坤彦, 尹翔, 刘笑竹, 等. 基于粒子群优化和深度强化学习的策略搜索方法[J]. 计算机工程与科学, 2023, 45(4): 718-725.
|
|
Peng Kunyan, Yin Xiang, Liu Xiaozhu, et al. A Strategy Search Method Based on Particle Swarm Optimization and Deep Reinforcement Learning[J]. Computer Engineering & Science, 2023, 45(4): 718-725.
|
| [32] |
Suri K, Shi X Q, Plataniotis K N, et al. Maximum Mutation Reinforcement Learning for Scalable Control[J]. arXiv Preprint arXiv:, 2020.
|
| [33] |
Marchesini Enrico, Corsi Davide, Farinelli Alessandro. Genetic Soft Updates for Policy Evolution in Deep Reinforcement Learning[C]//ICLR 2021. New York: ICLR, 2021: 1-15.
|