系统仿真学报 ›› 2025, Vol. 37 ›› Issue (11): 2741-2753.doi: 10.16182/j.issn1004731x.joss.24-0574

• 论文 • 上一篇    

数字孪生云边网络下服务缓存与计算卸载优化

郑家瑜1,2,3, 麦著学1,2,3, 陈哲毅1,2,3   

  1. 1.福州大学 计算机与大数据学院,福建 福州 350116
    2.大数据智能教育部工程研究中心,福建 福州 350002
    3.福建省网络计算与智能信息处理重点实验室(福州大学),福建 福州 350116
  • 收稿日期:2024-05-27 修回日期:2024-07-30 出版日期:2025-11-18 发布日期:2025-11-27
  • 通讯作者: 陈哲毅
  • 第一作者简介:郑家瑜(2000-),男,硕士生,研究方向为边缘计算、服务缓存、计算卸载。
  • 基金资助:
    国家自然科学基金(62202103);中央引导地方科技发展资金(2022L3004);福建省科技经济融合服务平台(2023XRH001);福厦泉国家自主创新示范区协同创新平台项目(2022FX5)

Optimization of Service Caching and Computation Offloading in Digital Twin Cloud-edge Networks

Zheng Jiayu1,2,3, Mai Zhuxue1,2,3, Chen Zheyi1,2,3   

  1. 1.College of Computer and Data Science, Fuzhou University, Fuzhou 350116, China
    2.Engineering Research Center of Big Data Intelligence, Ministry of Education, Fuzhou 350002, China
    3.Fujian Key Laboratory of Network Computing and Intelligent Information Processing (Fuzhou University), Fuzhou 350116, China
  • Received:2024-05-27 Revised:2024-07-30 Online:2025-11-18 Published:2025-11-27
  • Contact: Chen Zheyi

摘要:

在移动边缘计算(mobile edge computing,MEC)中,针对如何联合优化服务缓存与计算卸载以满足用户多样化需求,以及不合理的资源分配导致了低效的资源利用等问题,提出了一种新颖的基于凸优化使能深度强化学习的服务缓存与计算卸载联合优化(joint optimization of service caching and computation offloading with convex-optimization-enabled deep reinforcement learning,JCO-CR)方法。构建了一种新型的数字孪生云边网络(digital twin cloud-edge networks,DTCEN)模型。将服务缓存与计算卸载联合优化问题解耦为两个子问题并采用改进的深度强化学习方法和凸优化理论分别求解。仿真实验结果表明:JCO-CR方法能够有效降低长期服务延迟,并在不同场景下均展现出更加优越的性能。

关键词: 移动边缘计算, 数字孪生, 服务缓存, 计算卸载, 深度强化学习, 凸优化

Abstract:

In mobile edge computing (MEC), to satisfy diverse user demands by jointly optimizing service caching and computation offloading and address low-efficiency resource utilization caused by irrational resource allocation, this paper proposed a novel joint optimization of service caching and computation offloading with a convex-optimization-enabled deep reinforcement learning (JCO-CR) method. Additionally, a new model for digital twin cloud-edge networks (DTCEN) was constructed. The joint optimization of service caching and computation offloading was decoupled into two sub-problems, which were solved by an improved deep reinforcement learning method and convex optimization theory, respectively. Simulation experiments demonstrate that the proposed JCO-CR method can reduce long-term service latency and achieve better performance under different scenarios.

Key words: mobile edge computing, digital twin(DT), service caching, computation offloading, deep reinforcement learning, convex optimization

中图分类号: